Linear regression unit:

- Simple linear regression with ordinary least squares (todayt)
- Lab activity: Linear regression (Wednesday)
- Newton's method and gradient descent (Friday)
- Training linear regression using gradient descent (next week Monday)

Today:

- Foundational ideas
- Problem statement for linear regression
- Error and loss
- Partial derivatives and gradients
- Deriving ordinary least squares for simple linear regression
- Multiple regression
- Regularization

Which of the following is not a hyperparameter of a k nearest neighbor classifier?
The number of neighbors The distance metric The curse of dimensionality

Which of the following is not true about k nearest neighbors classification?
It is non-parametric
The classifier stores all the training data

It works very well on many applications
The curse of dimensionality doesn't apply

Which if the following is not a vector distance metric?
Euclidean Manhattan Mahalanobis

Canberra Curse of dimensionality

Finding the partial derivative of the loss function with respect to θ_{0} and finding θ_{0} where this partial derivative is 0 :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{0}} & =-2 \sum_{n=0}^{N-1}\left(y_{n}-\theta_{1} x_{n}-\theta_{0}\right) & N \theta_{0} & =\sum_{n=0}^{N-1}\left(y_{n}-\theta_{1} x_{n}\right) \\
0 & =-2 \sum_{n=0}^{N-1}\left(y_{n}-\theta_{1} x_{n}-\theta_{0}\right) & \theta_{0} & =\frac{\sum_{n=0}^{N-1}\left(y_{n}-\theta_{1} x_{n}\right)}{N} \\
& =2 N \theta_{0}-2 \sum_{n=0}^{N-1}\left(y_{n}-\theta_{1} x_{n}\right) & & =\bar{y}-\theta_{1} \bar{x}
\end{aligned}
$$

\ldots where \bar{y} and \bar{x} are the mean values of y and x

Doing the same but for θ_{1} :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{1}} & =\sum_{n=0}^{N-1}-2 x_{n}\left(y_{n}-\theta_{1} x_{n}-\theta_{0}\right) \\
0 & =\sum_{n=0}^{N-1} x_{n}\left(y_{n}-\theta_{1} x_{n}-\theta_{0}\right) \quad \theta_{1} \sum_{n=0}^{N-1} x_{n}\left(x_{n}-\bar{x}\right)=\sum_{n=0}^{N-1} x_{n}\left(y_{n}-\bar{y}\right) \\
& =\sum_{n=0}^{N-1} x_{n}\left(y_{n}-\theta_{1} x_{n}-\bar{y}+\theta_{1} \bar{x}\right) \\
& =\sum_{n=0}^{N-1} x_{n}\left(\theta_{1}\left(\bar{x}-x_{n}\right)-\left(\bar{y}-y_{n}\right)\right)
\end{aligned}
$$

Note that $\sum_{n=0}^{N-1}\left(\bar{y}-y_{n}\right)=0$ and $\sum_{n=0}^{N-1}\left(\bar{y}-y_{n}\right)=0$, and so $\sum_{n=0}^{N-1} \bar{x}\left(\bar{y}-y_{n}\right)=0$ and $\sum_{n=0}^{N-1} \bar{x}\left(\bar{y}-y_{n}\right)=0$. Plugging these in...

$$
\begin{aligned}
\theta_{1} & =\frac{\sum_{n=0}^{N-1} x_{n}\left(y_{n}-\bar{y}\right)}{\sum_{n=0}^{N-1} x_{n}\left(x_{n}-\bar{x}\right)} \\
& =\frac{\sum_{n=0}^{N-1} x_{n}\left(y_{n}-\bar{y}\right)+\sum_{n=0}^{N-1} \bar{x}\left(\bar{y}-y_{n}\right)}{\sum_{n=0}^{N-1} x_{n}\left(x_{n}-\bar{x}\right)+\sum_{n=0}^{N-1} \bar{x}\left(\bar{y}-y_{n}\right)} \\
& =\frac{\sum_{n=0}^{N-1}\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{\sum_{n=0}^{N-1}\left(x_{n}-\bar{x}\right)^{2}}
\end{aligned}
$$

Root mean square error:

$$
\mathcal{L}_{\text {RMSE }}(\boldsymbol{\theta})=\sqrt{\frac{1}{N} \sum_{n=0}^{N-1}\left(y_{n}-y\left(x_{n}\right)\right)^{2}}
$$

Sum square error:

$$
\mathcal{L}(\boldsymbol{\theta})=\sum_{n=0}^{N-1}\left(y_{n}-y\left(\boldsymbol{x}_{n}\right)\right)^{2}
$$

Sum square error, 'linear-algebra form":

$$
\mathcal{L}(\boldsymbol{\theta})=\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}
$$

Partial derivatives of the sum square error, "non-linear-algebra form":

$$
\begin{aligned}
\mathcal{L}\left(\theta_{0}, \theta_{1}, \ldots \theta_{D}\right) & =\sum_{n=0}^{N-1}\left(y_{n}-\theta_{0}-\theta_{1} \boldsymbol{x}_{n, 1}-\ldots-\theta_{D} \boldsymbol{x}_{n, D}\right)^{2} \\
\frac{\partial \mathcal{L}}{\partial \theta_{0}} & =-2 \sum_{n=0}^{N-1}\left(y_{n}-\theta_{0}-\theta_{1} \boldsymbol{x}_{n, 1}-\ldots-\theta_{D} \boldsymbol{x}_{n, D}\right) \\
\frac{\partial \mathcal{L}}{\partial \theta_{i}} & =-2 \sum_{n=0}^{N-1} \boldsymbol{x}_{n, i}\left(y_{n}-\theta_{0}-\theta_{1} \boldsymbol{x}_{n, 1}-\ldots-\theta_{D} \boldsymbol{x}_{n, D}\right)
\end{aligned}
$$

Redone in "linear-algebra form":

$$
\begin{array}{rlrl}
\mathcal{L}(\boldsymbol{\theta}) & =\sum_{n=0}^{N-1}\left(y_{n}-\boldsymbol{\theta}^{T} \boldsymbol{x}_{n}\right)^{2} & \\
& =(\boldsymbol{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\theta}) & \nabla_{\boldsymbol{\theta}} \mathcal{L} & =\frac{\partial}{\partial \boldsymbol{\theta}}\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{y}^{T} \mathbf{X} \boldsymbol{\theta}+\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}\right) \\
& =\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{y}^{T} \mathbf{X} \boldsymbol{\theta}+\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}\right) & & =-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}
\end{array}
$$

Now we set the whole lot of the partial derivatives to $\mathbf{0}$, that is, the zero vector of length $D+1$, and solve for $\boldsymbol{\theta}$.

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \mathcal{L} & =-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} \\
\mathbf{0} & =-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} \\
\boldsymbol{y}^{T} \mathbf{X} & =\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} \\
\boldsymbol{\theta}^{T} & =\boldsymbol{y}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
\end{aligned}
$$

Loss function for ridge regularization (ridge regression):

$$
\mathcal{L}_{\text {ridge }}(\boldsymbol{\theta})=\underbrace{\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}}_{\text {original loss }}+\underbrace{\alpha\|\boldsymbol{\theta}\|^{2}}_{\text {regularizer }}
$$

Finding a closed form for ridge regression:

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \mathcal{L} & =-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}+2 \alpha \boldsymbol{\theta} \\
\mathbf{0} & =-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}+2 \alpha \boldsymbol{\theta} \\
\boldsymbol{y}^{T} \mathbf{X} & =\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}+\alpha \boldsymbol{\theta} \\
& =\boldsymbol{\theta}^{T}\left(\mathbf{X}^{T} \mathbf{X}+\alpha \mathbf{I}\right) \\
\boldsymbol{\theta}^{T} & =\boldsymbol{y}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\alpha \mathbf{I}\right)^{-1} \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\alpha \mathbf{I}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
\end{aligned}
$$

Loss function for LASSO regularization

$$
\mathcal{L}_{\text {LASSO }}(\boldsymbol{\theta})=\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}+\alpha \sum_{i=1}^{D}\left|\theta_{i}\right|=\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}+\alpha\|\boldsymbol{\theta}\|^{1}
$$

Coming up:

Read and respond to Boston Housing Dataset article (see Schoology for details) (due Tuesday)

Do K nearest neighbors assignment (due end-of-day Thurs)
Take linear regression quiz (due class time Fri)
Read textbook sections on linear regression(due end-of-day Mon, Jan 30) Do linear regression assignment (due end-of-day Mon, Jan 30)

