Chapter 7 outline:

- Introduction, function equality, and anonymous functions (last week Wednesday)
- Image and inverse images (Monday)
- Function properties, composition, and applications to programming (Wednesday)
- Cardinality (Today)
- Practice quiz and Countability (next week Monday)
- Review (next week Wednesday)
- Test 3, on Ch 6 \& 7 (next week Friday)

Today:

- Homework hints
- Formal definition of cardinality
- If $A \cap B=\emptyset$, then $|A \cup B|=|A|+|B|$
- If $f: A \rightarrow B$ is one-to-one, then $|A| \leq|B|$.

Ex. 7.6.3. If $A, B \subseteq X$ and f is one-to-one, then $F(A-B) \subseteq F(A)-F(B)$.

Ex. 7.8.1. If $f: A \rightarrow B$, then $f \circ i_{A}=f$.

Not a function

Not a function

One-to-one, not onto

A function but not one-to-one or onto

One-to-one correspondence

Onto, not one-to-one $|X| \geq|Y|$

One-to-one, not onto

$$
|X| \leq|Y|
$$

One-to-one correspondence

$$
|X|=|Y|
$$

Two finite sets X and Y have the the same cardinality as each other if there exists a one-to-one correspondence from X to Y.

To use this analytically:
Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.
f is both onto and one-to-one.
To use this synthetically:
Given sets X and Y
[Define f] Let $f: X \rightarrow Y$ be a function defined as \ldots
Suppose $y \in Y$. Somehow find $x \in X$ such that $f(x)=y$. Hence f is onto.
Suppose $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Somehow show $x_{1}=x_{2}$. Hence f is one-to-one.
Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as $|X|=n$, if there exists a one-to-one correspondence from $\{1,2, \ldots n\}$ to X. Moreover, $|\emptyset|=0$.

Theorem 7.12. If A and B are finite, disjoint sets, then $|A \cup B|=|A|+|B|$.
Theorem 7.13. If A and B are finite sets and $f: A \rightarrow B$ is one-to-one, then $|A| \leq|B|$.
Exercise 7.9.5. If A and B are finite sets and $f: A \rightarrow B$ is onto, then $|A| \geq \mid B$.
$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$|A \cup B|=\mid\left\{a_{1}, a_{2}, a_{3}, x, b_{1}, b_{2}\right\}=6$

$$
\begin{gathered}
|A|+|B|= \\
=\left|\left\{a_{1}, a_{2}, a_{3}, x\right\}\right|+\left|\left\{x, b_{1}, b_{2}\right\}\right| \\
=4+3=7
\end{gathered}
$$

$|A \cup B|=\mid\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right\}=5$

$$
\begin{gathered}
|A|+|B|= \\
=\left|\left\{a_{1}, a_{2}, a_{3}\right\}\right|+\left|\left\{b_{1}, b_{2}\right\}\right| \\
=3+2=5
\end{gathered}
$$

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

x	f
1	Zed
2	Yelemis
3	Xavier

x	g
1	Wilhelmina
2	Valerie
3	Ursula
4	Tassie

x	h				
1	$f(1)$	$=$	Zed		
2	$f(2)$	$=$	Yelemis		
3	$f(3)$	$=$	Xavier		
4	$g(4-3)$	$=$	$g(1)$	$=$	Wilhelmina
5	$g(5-3)$	$=$	$g(2)$	$=$	Valerie
6	$g(6-3)$	$=$	$g(3)$	$=$	Ursula
7	$g(7-3)$	$=$	$g(4)$	$=$	Tassie

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$f: A \rightarrow B$ is one-to-one $\rightarrow|A| \leq|B|$

$f: A \rightarrow B$ is one-to-one $\rightarrow|A| \leq|B|$

For next time:
Pg 359: 7.9.(1 \& 2)

