Chapter 4 roadmap:

- Subset proofs (last week Wednesday)
- Set equality and emptiness proofs (last week Friday)
- Conditional and biconditional proofs (Today)
- Proofs about powersets (Friday)
- From theorems to algorithms (next week Monday)
- (Start Chapter 5 next week)

Today:

- Proofs of conditional propositions

General forms:

1. Facts (p)
2. Subset $X \subseteq Y$
3. Set equality $X=Y$
4. Set emptiness $X=\emptyset$
5. Conditionals $(p \rightarrow q)$
6. Biconditionals ($p \leftrightarrow q$)

- Proofs about numbers
- Proofs of biconditional propositions

Hypothetical conditional from Game 3:
To prove $p \rightarrow q$
Suppose p

$$
p \rightarrow q
$$

An integer x is even if $\exists k \in \mathbb{Z} \mid x=2 k$.
An integer x is odd if $\exists k \in \mathbb{Z} \mid x=2 k+1$.
"Axiom 3." If $x, y \in \mathbb{Z}$, then $x+y \in \mathbb{Z}$. (Closure of addition)
"Axiom 4." If $x, y \in \mathbb{Z}$, then $x \cdot y \in \mathbb{Z}$. (Closure of multiplication)
"Axiom 5." If $x \in \mathbb{Z}$, then x is even iff x is not odd.
$\forall x, y \in \mathbb{Z}, x \mid y(r e a d$, " x divides y ") if $\exists k \in \mathbb{Z} \mid x \cdot k=y$.

For next time:

Pg 162: 4.5.(1, 4, 5)
Pg 164: 4.6.(2 \& 5)
Pg 165: 4.7.(1 \& 6)
Review 2.4, especially Ex 2.4.15
Skim 4.9
Take quiz

