Chapter 7 outline:

- Introduction, function equality, and anonymous functions (Fri, Apr 5)
- Image and inverse images (last week Monday)
- Function properties, function composition (last week Wednesday)
- Cardinality (last week Friday)
- Practice quiz and Countability (Today)
- Review (Wednesday)
- Test 3, on Ch 6 \& 7 (Friday)

Ex 4.7.1. $A \subseteq B$ iff $(B-A) \cup A=B$.
Ex 4.4.5 $(B-A) \cap A=\emptyset$
Thm 7.12. If A and B are finite, disjoint sets, then $|A \cup B|=|A|+|B|$.

Assume A and B are finite sets.
Ex 7.9.1. If $A \subseteq B$, then $|B-A|=|B|-|A|$.
Ex 7.9.2. If $A \subseteq B$, then $|A| \leq|B|$.

Two finite sets X and Y have the same cardinality as each other if there exists a one-to-one correspondence from X to Y.

To use this analytically:
Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.
f is both onto and one-to-one.
To use this synthetically:
Given sets X and Y
[Define f] Let $f: X \rightarrow Y$ be a function defined as \ldots
Suppose $y \in Y$. Somehow find $x \in X$ such that $f(x)=y$. Hence f is onto.
Suppose $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Somehow show $x_{1}=x_{2}$. Hence f is one-to-one.
Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as $|X|=n$, if there exists a one-to-one correspondence from $\{1,2, \ldots n\}$ to X. Moreover, $|\emptyset|=0$.

Two finite sets X and Y have the the same cardinality as each other if there exists a one-to-one correspondence from X to Y.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as $|X|=n$, if there exists a one-to-one correspondence from $\{1,2, \ldots n\}$ to X. Moreover, $|\emptyset|=0$.

Given a set X, if there exists $n \in \mathbb{N}$ and a one-to-one correspondence from $\{1,2, \ldots n\}$ to X, then X is finite and $|X|=n$. Otherwise, X is infinite.

Are all infinities equal?
Which is more intuitive to you,

$$
|\mathbb{N}|=|\mathbb{W}|=|\mathbb{Z}|=|\mathbb{Q}|=|\mathbb{R}|
$$

or

$$
|\mathbb{N}|<|\mathbb{W}|<|\mathbb{Z}|<|\mathbb{Q}|<|\mathbb{R}|
$$

Thm 7.19. \mathbb{W} and \mathbb{N} have the same cardinality.
Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{W}.]
Let $f: \mathbb{W} \rightarrow \mathbb{N}$ be defined so that $f(n)=n+1$.
Suppose $n \in \mathbb{N}$. Then $f(n-1)=(n-1)+1=n$, so f is onto.
Next suppose $n_{1}, n_{2} \in \mathbb{N}$ such that $f\left(n_{1}\right)=f\left(n_{2}\right)$. Then $n_{1}+1=n_{2}+1$, and moreover $n_{1}=n_{2}$. Hence f is one-to-one.
Since a one-to-one correspondence exists between \mathbb{W} and \mathbb{N}, the two sets have the same cardinality. \square

A set X is countably infinite if there exists a one-to-one correspondence from \mathbb{N} to X. A set is countable if it is finite or countably infinite. Otherwise it is uncountable.

Thm 7.20. \mathbb{Z} is countably infinite.
Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{Z}.] Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined so that

$$
f(x)= \begin{cases}n \operatorname{div} 2 & \text { if } n \text { is even } \\ -(n \operatorname{div} 2) & \text { otherwise }\end{cases}
$$

Since f is a one-to-one correspondence, \mathbb{Z} is countably infinite.

$1 / 1$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$
$2 / 1$	$2 / 2$	$2 / 3$	$2 / 4$	$2 / 5$
$3 / 1$	$3 / 2$	$3 / 3$	$3 / 4$	$3 / 5$
$4 / 1$	$4 / 2$	$4 / 3$	$4 / 4$	$4 / 5$
$5 / 1$	$5 / 2$	$5 / 3$	$5 / 4$	$5 / 5$


```
fun findRoom(busNum, seatNum) =
    let
        fun nextPair(a, b) =
            if a = 1 andalso b mod 2 = 1 then (1, b + 1)
            else if b = 1 andalso a mod 2 = 0
                        then (a + 1, 1)
                else if (a + b) mod 2 = 1 then (a + 1, b - 1)
                else (a - 1, b + 1);
        fun findRoomHelper(i, currentPair) =
            if currentPair <> (busNum, seatNum)
            then findRoomHelper(i + 1, nextPair(currentPair))
            else i;
    in
        findRoomHelper(1, (1, 1))
end;
```

```
fun findBusSeat(room) =
    let
        fun nextPair(a, b) =
            if a = 1 andalso b mod 2 = 1 then (1, b + 1)
            else if b = 1 andalso a mod 2 = 0
                    then (a + 1, 1)
            else if (a + b) mod 2 = 1 then (a + 1, b - 1)
            else (a - 1, b + 1);
        fun findBusSeatHelper(i, currentPair) =
            if i <> room
            then findBusSeatHelper(i + 1,
                nextPair(currentPair))
            else currentPair;
    in
        findBusSeatHelper(1, (1, 1))
    end;
```

(1) $1 / 1 \xrightarrow{2} 1 / 2$
(5) $1 / 3 \xrightarrow{\text { (6) }} 1 / 4$
(11) 1
(3) 2
(4) $3 / 1$
(9) $4 / 1$
(10) $5 / 1 / 5 / 2$
(7) $2 / 3$
3
$2 / 5$
$3 / 5$
$4 / 3$
$4 / 4$
$4 / 5$
$5 / 5$

Thm 7.21. \mathbb{Q}^{+}is countably infinite.
So,

$$
|\mathbb{N}|=|\mathbb{W}|=|\mathbb{Z}|=|\mathbb{Q}|
$$

What about \mathbb{R} ?

Thm 7.22. $(0,1)$ has the same cardinality as \mathbb{R}.

Thm 7.23. $(0,1)$ is uncountable.
Proof. Suppose $(0,1)$ is countable. Then there exists a one-to-one correspondence $f: \mathbb{N} \rightarrow(0,1)$. We will use f to give names to the all the digits of all the numbers in $(0,1)$, considering each number in its decimal expansion, where each $a_{i, j}$ stands for a digit.:

$$
\begin{aligned}
f(1) & =0 . a_{1,1} a_{1,2} a_{1,3} \ldots a_{1, j} \ldots \\
f(2) & =0 . a_{2,1} a_{2,2} a_{2,3} \ldots a_{2, j} \ldots \\
& \vdots \\
f(x) & =0 . a_{x, 1} a_{x, 2} a_{x, 3} \ldots a_{x, j} \ldots
\end{aligned}
$$

Now construct a number $d=0 . d_{1} d_{2} d_{3} \ldots d_{i} \ldots$ as follows

$$
d_{i}= \begin{cases}1 & \text { if } a_{i, i} \neq 1 \\ 2 & \text { if } a_{i, i}=1\end{cases}
$$

Since $d \in(0,1)$ and f is onto, there exists an $x \in \mathbb{N}$ such that $f(x)=d$. Moreover,

$$
f(x)=0 . a_{x, 1} a_{x, 2} a_{x, 3} \ldots a_{x, x} \ldots
$$

so

$$
d=0 . a_{x, 1} a_{x, 2} a_{x, 3} \ldots a_{x, x} \ldots
$$

by substitution. In other words, $d_{i}=a_{x, i}$, and specifically $d_{x}=a_{x, x}$. However, by the way that we have defined d, we know that $d_{x} \neq a_{x, x}$, a contradiction. Therefore $(0,1)$ is not countable.

