Chapter 4 roadmap:

- Subset proofs (Wednesday)
- Set equality and emptiness proofs (Today)
- Conditional and biconditional proofs (next week Wednesday)
- Proofs about powersets (new week Friday)
- From theorems to algorithms (week-after Monday)
- (Start Chapter 5 week-after Wednesday)

Today:

- Proofs that sets are equal

General forms:

1. Facts (p) Set forms

1. Subset $X \subseteq Y$
2. Set equality $X=Y$
3. Set emptiness $X=\emptyset$
4. Conditionals $(p \rightarrow q)$
5. Biconditionals $(p \leftrightarrow q)$

- Proofs that a set is empty

$$
A \times(B-C) \subseteq(A \times B)-(A \times C)
$$

Proof (long version). Suppose $x \in A \times(B-C)$. By definition of Cartesian product, $x=(a, d)$ for some $a \in A$ and $d \in B-C$. By definition of difference, $d \in B$ and $d \notin C$.

By definition of Cartesian product, $(a, d) \in A \times B$. Also by definition of Cartesian product, this time used negatively, $(a, d) \notin A \times C$.
[That is, we rewrite $d \notin C$. as $\sim(d \in C)$. By generalization, $\sim(d \in C \wedge a \in$ A). By definition of Cartesian product, $\sim((a, d) \in A \times C)$. This can be rewritten as $(a, d) \notin A \times C$.]

By definition of difference, $(a, d) \in(A \times B)-(A \times C)$. By substitution, $x \in(A \times B)-(A \times C)$. Therefore, by definition of subset, $A \times(B-C) \subseteq$ $(A \times B)-(A \times C)$.

$$
A \times(B-C) \subseteq(A \times B)-(A \times C) .
$$

Proof (short version). Suppose $(a, d) \in A \times(B-C)$. By definition of Cartesian product, $a \in A$ and $d \in B-C$.

By definition of difference, $d \in B$ and $d \notin C$. By definition of Cartesian product, $(a, d) \in A \times B$ and $(a, d) \notin A \times C$.
By definition of difference, $(a, d) \in(A \times B)-(A \times C)$. Therefore, by definition of subset, $A \times(B-C) \subseteq(A \times B)-(A \times C)$.

For next time:

Pg 160: 4.3.(3, 14, 15, 18)
Pg 161: 4.4.(5 \& 6)
See assignment on Canvas for hint on Ex 4.3.15.
Read 4.(5-8)
Take quiz

