Chapter 7 in context:

- Chapter 5 Relations: Builds on proofs about sets
- Chapter 6 Self Reference: Interlude between Chapters 5 and 7, focuses on recursive thinking
- Chapter 7 Function: Builds on proofs about relations

Chapter 7 outline:

- Introduction, function equality, and anonymous functions (Today)
- Image and inverse images (next week Monday)
- Function properties, composition, and applications to programming (next week Wednesday)
- Cardinality (next week Friday)
- Countability (week-after Monday, Apr 15)
- Review (week-after Wednesday, Apr 17)
- Test 3, on Ch 6 \& 7 (week-after Friday, Apr 19)

Cross out the term/concept that was not used in the reading for today as a way to think about functions
A kind of machine A form of induction

A mapping between two collections
A kind of relation

For the function $f: X \rightarrow Y, X$ is the \qquad and Y is the
function
codomain
constant
first-class value
domain
relation

Alice	$x 3498$
Bob	$x 4472$
Carol	$x 5392$
Dave	$x 9955$
Eve	$\times 2533$
Fred	$x 9448$
Georgia	$x 3684$
Herb	$x 8401$

Not a function.
(There's a domain element that is related to two things.)

Not a function.
(There's a domain element that is not related to anything.)

A function.
(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

Definition of function

Informal: A function is a relation in which everything in the first set is related to exactly one thing in the second set.

Formal: $f \subseteq X \times Y$ is a function if

$$
\begin{array}{rll}
\forall x \in X, & \exists y \in Y \mid(x, y) \in f & \text { existence of } y \\
& \wedge & \forall y_{1}, y_{2} \in Y,\left(\left(x, y_{1}\right),\left(x, y_{2}\right) \in f\right) \rightarrow y_{1}=y_{2}
\end{array} \quad \text { uniqueness of } y
$$

Change of notation

Informal: A function is a relation in which everything in the first set is related to exactly one thing in the second set.

Formal (relation notation): $f \subseteq X \times Y$ is a function if

$$
\begin{array}{rll}
\forall x \in X, & \exists y \in Y \mid(x, y) \in f & \text { existence of } y \\
& \wedge & \forall y_{1}, y_{2} \in Y,\left(\left(x, y_{1}\right),\left(x, y_{2}\right) \in f\right) \rightarrow y_{1}=y_{2}
\end{array} \quad \text { uniqueness of } y
$$

Formal (function notation): $f \subseteq X \times Y$ is a function if

$$
\begin{array}{lll}
\forall x \in X, & \exists y \in Y \mid f(x)=y & \text { existence of } y \\
& \wedge & \forall y_{1}, y_{2} \in Y,\left(f(x)=y_{1} \wedge f(x)=y_{2}\right) \rightarrow y_{1}=y_{2}
\end{array} \quad \text { uniqueness of } y
$$

We call X the domain and Y the codomain of f.

Definition of function equality. Let $f, g: X \rightarrow Y$
Old definition: functions are sets.

$$
f=g \text { if } \forall f \subseteq g \wedge g \subseteq f
$$

New definition: based on function notation.

$$
f=g \text { if } \forall x \in X, f(x)=g(x)
$$

Function equality: $f=g$ if $\forall x \in X, f(x)=g(x)$
Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x \cdot(x-1)-6$ and $g(x)=(x-3)(x+2)$.
Prove $f=g$.

The old and new definitions of function equality are equivalent. Ex 7.2.1. $(\forall x \in X, f(x)=g(x)) \quad$ iff $\quad(f \subseteq g \wedge g \subseteq f)$.

The old and new definitions of function equality are equivalent.
Ex 7.2.1. $(\forall x \in X, f(x)=g(x)) \quad$ iff $\quad(f \subseteq g \wedge g \subseteq f)$.
Proof. First, suppose $\forall x \in X, f(x)=g(x)$, that is, $f=g$ by definition of function equality. Further suppose $(x, y) \in f$. By function notation, $f(x)=y$. By supposition and substitution, $g(x)=y$. By relation notation, $(x, y) \in g$. Finally, $f \subseteq g$ by definition of subset.

Similarly $g \subseteq f$, and therefore $f=g$ by definition of set equality.
Conversely, suppose $f \subseteq g \wedge g \subseteq f$, that is, $f=g$ by definition of set equality. Further suppose $x \in X$.

Let $y=f(x)$. Note that this $y \in Y$ must exist by definition of function. By relation notation, $(x, y) \in f$.

By definition of subset [or set equality], $(x, y) \in g$. In function notation, that is $g(x)=y$, and so $f(x)=g(x)$ by substitution. Therefore $f=g$ by definition of function equality.

For next time:

Pg 331: 7.2.(2 \& 3)
Pg 335: 7.3.(3, 4, 8)
Read 7.4
Skim 7.5

