Chapter 7 outline:

- Introduction, function equality, and anonymous functions (last week Friday)
- Image and inverse images (Monday)
- Function properties, composition, and applications to programming (Today)
- Cardinality (Friday)
- Countability (next week Monday)
- Review (next week Wednesday)
- Test 3, on Ch 6 \& 7 (next week Friday)

Today:

- Programming: map and filter
- Definition of one-to-one and onto, plus proofs
- Inverse functions
- Definition of function composition, plus proofs

Not a function.
(There's a domain element that is related to two things.)

Not a function.
(There's a domain element that is not related to anything.)

$f: X \rightarrow Y$ is onto if $\forall y \in Y$, $\exists x \in X \mid f(x)=y$.

Analytic use:
f is onto.
$y \in Y$.
Hence $\exists x \in X$ such that $f(x)=y$.

Synthetic use:

Suppose $y \in Y$.
引
(Somehow find x such that $f(x)=y$.) Therefore f is onto.

One-to-one (Injection)

Domain elements don't share.
f is one-to-one if $\forall x_{1}, x_{2} \in X$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.

Analytic use:

f is one-to-one.
$f\left(x_{1}\right)=f\left(x_{2}\right)$.
Hence $x_{1}=x_{2}$.

Synthetic use:

Suppose $x_{1}, x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
(Somehow show $x_{1}=x_{2}$.)
Therefore f is one-to-one.

Onto
（not one－to－one） $|X| \geq|Y|$

One－to－one （not onto）
$|X| \leq|Y|$

Both onto and one－to－one

$$
|X|=|Y|
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?
f is one-to-one.
Proof. Suppose $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$. [Want $x_{1}=x_{2}$] Then, by how f is defined,

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?
f is one-to-one.
Proof. Suppose $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$. [Want $x_{1}=x_{2}$] Then, by how f is defined,

$$
\begin{aligned}
& \frac{x_{1}}{2}=\frac{x_{2}}{2} \\
& x_{1}=x_{2}
\end{aligned}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?
f is one-to-one.
Proof. Suppose $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$. [Want $x_{1}=x_{2}$] Then, by how f is defined,

$$
\begin{aligned}
\frac{x_{1}}{2} & =\frac{x_{2}}{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Therefore f is one-to-one by definition.
f is onto.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?
f is one-to-one.
Proof. Suppose $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$. [Want $x_{1}=x_{2}$] Then, by how f is defined,

$$
\begin{aligned}
\frac{x_{1}}{2} & =\frac{x_{2}}{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Therefore f is one-to-one by definition.
f is onto.
Proof. Suppose $y \in \mathbb{R}$. [Want x such that $f(x)=y$.]

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\frac{x}{2}$. Is f one-to-one? Is it onto?
f is one-to-one.
Proof. Suppose $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$. [Want $x_{1}=x_{2}$] Then, by how f is defined,

$$
\begin{aligned}
\frac{x_{1}}{2} & =\frac{x_{2}}{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Therefore f is one-to-one by definition.
f is onto.
Proof. Suppose $y \in \mathbb{R}$. [Want x such that $f(x)=y$.]
Let $x=2 y$. Then

$$
\begin{aligned}
f(x) & =\frac{2 y}{2} \\
& =y
\end{aligned}
$$

Therefore f is onto by definition \square

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$. Is f one-to-one? Is it onto?

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$. Is f one-to-one? Is it onto?

f is not one-to-one.
$f(2)=2^{2}=4$
$f(-2)=(-2)^{2}=4$
f is no onto.
Let $y=-1$.
$\nexists x \in \mathbb{R}$ such that $f(x)=-1$.

Ex 7.6.4. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.
(Ex 7.4.9 was, Prove $A \subseteq F^{-1}(F(A))$, and Ex 7.4.10 was, Find a counterexample for $A=F^{-1}(F(A))$.)

Ex 7.6.4. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.
(Ex 7.4.9 was, Prove $A \subseteq F^{-1}(F(A))$, and Ex 7.4.10 was, Find a counterexample for $A=F^{-1}(F(A))$.)

Ex 7.6.5. If $A \subseteq Y$ and f is onto, then $A \subseteq F\left(F^{-1}(A)\right)$.

Inverse relation: $R^{-1}=\{(y, x) \in Y \times X \mid(x, y) \in R\}$
Since a function is a relation, a function has an inverse, but we don't know that the inverse of a function is a function.

If $f: X \rightarrow Y$ is a one-to-one correspondence, then

$$
f^{-1}: Y \rightarrow X=\{(y, x) \in Y \times X \mid f(x)=y\}
$$

is the inverse function of f.
Theorem 7.8 If $f: X \rightarrow Y$ is a one-to-one correspondence, then $f^{-1}: Y \rightarrow X$ is well defined.

Proof. Suppose $y \in Y$. Since f is onto, there exists $x \in X$ such that $f(x)=y$. Hence $(y, x) \in f^{-1}$ or $f^{-1}(y)=x$.
Further suppose $\left(y, x_{1}\right),\left(y, x_{2}\right) \in f^{-1}$ (That is, suppose that both $f^{-1}(y)=x_{1}$ and $f^{-1}(y)=x_{2}$.) Then $f\left(x_{1}\right)=y$ and $f\left(x_{2}\right)=y$. Since f is one-to-one, $x_{1}=x_{2}$.
Therefore, by definition of function, f^{-1} is well defined.

Relation composition: If R is a relation from X to Y and S is a relation from Y to Z, then $S \circ R$ is the relation from X to Z defined as

$$
S \circ R=\{(x, z) \in X \times Z \mid \exists y \in Y \text { such that }(x, y) \in R \text { and }(y, z) \in S\}
$$

Function composition: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $g \circ f: X \rightarrow Z$ is defined as

$$
g \circ f=\{(x, z) \in X \times Z \mid z=g(f(x))\}
$$

Theorem 7.9 If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions, then $g \circ f: X \rightarrow Z$ is well defined.

Proof. Suppose $x \in X$. Since f is a function, there exists a $y \in Y$ such that $f(x)=y$. Since g is a function, there exists a $z \in Z$ such that $g(y)=z$. By definition of composition, $(x, z) \in g \circ f$, or $g \circ f(x)=z$.
Next suppose $\left(x, z_{1}\right),\left(x, z_{2}\right) \in g \circ f$, or $g \circ f(x)=z_{1}$ and $g \circ f(x)=z_{2}$. By definition of composition, there exist y_{1}, y_{2} such that $f(x)=y_{1}, f(x)=y_{2}$, $g\left(y_{1}\right)=z_{1}$, and $g\left(y_{2}\right)=z_{2}$. Since f is a function, $y_{1}=y_{2}$. Since g is a function, $z_{1}=z_{2}$.
Therefore, by definition of function, $g \circ f$ is well defined.

Function composition: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $g \circ f: X \rightarrow Z$ is defined as

$$
g \circ f=\{(x, z) \in X \times Z \mid x=g(f(x))\}
$$

Let $f(x)=3 x$
Let $g(x)=x+7$
Then

$$
\begin{aligned}
g \circ f(x) & =f(x)+7 \\
& =3 x+7
\end{aligned}
$$

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto. Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto. Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.
[Now, we want to prove "ontoness." Of which function?

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto. Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.
[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness?

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto.
Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.
[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$?

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto.
Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.
[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.]

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

Ex 7.8.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto, then $g \circ f$ is onto.
Proof. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto.
[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.]

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

By definition of onto, there exists $y \in Y$ such that $g(y)=z$. Similarly there exists $x \in X$ such that $f(x)=y$. Now,

$$
\begin{aligned}
g \circ f(x) & =g(f(x)) & & \text { by definition of function compos } \\
& =g(y) & & \text { by substitution } \\
& =z & & \text { by substitution }
\end{aligned}
$$

Therefore $g \circ f$ is onto by definition.

Ex 7.8.5. If $f: X \rightarrow Y, g: X \rightarrow Y$ and $h: Y \rightarrow Z, h$ is one-to-one, and $h \circ f=h \circ g$, then $f=g$.

For next time:

Pg 346: 7.6.(2, 3, 6)
Ex "7.5.(a-c)" on Canvas
Pg 351: 7.8.(1, 5, 6)
Skim 7.9
Take last quiz

