Chapter 1 outline：
－Introduction，sets and elements（last week Monday）
－Set operations；visual verification of set propositions（last week Wednesday）
－Introduction to SML；cardinality and Cartesian products（last week Friday）
－Making types in SML（Today）
－Making functions in SML（Friday）

Today：Making stuff in SML
－A few follow－up points from last time
－Making our own types
－Making our own operations（time permitting）
1.9.5 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.
1.9.6 Explain how \mathbb{C}, the set of complex numbers, can be thought of as a Cartesian product.
1.9.7 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as $(1,2)$ and $\frac{3}{4}$ as $(3,4)$) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets cannot be thought of as two different ways to write the same set. (There are at least two reasons.)
\#1 $(5,4)+\operatorname{int}(4.0 / 3.1)$
(5 + 7, String.sub("hello", 2))

For next time:

Pg 36: 1.9.(3, 4, 8, 9, 10, 14, 16)
Pg 40: 1.10.(1-4)
SML problems should still be submitted on paper with the rest of the assignment.

Re-read 1.11 (if necessary)
Read 1.(12 \& 13).
(No quiz)

