Chapter 6 roadmap:

- Recursive definitions and types (last week Friday)
- Structural induction (Monday)
- Mathematical induction (Today)
- Loop invariant proofs (next week Monday and Wednesday)

Project prototype due Wed, Apr 3

Last time we saw self-referential proofs for propositions quantified over recursively defined sets, structural induction.

Today we see self-referential proofs for propositions quantified over the natural numbers and whole numbers.

- Opening examples and observations
- General form of mathematical induction
- Comments on the term induction
- Other examples, including on sets

$\begin{array}{lll}- & 0 \\ - & 0\end{array}$
000

Conjecture:

$$
\forall n \in \mathbb{N}, \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

$\sum_{i=1}^{5}(2 i-1)=(2 \cdot 1-1)+(2 \cdot 2-1)+(2 \cdot 3-1)+(2 \cdot 4-1)+(2 \cdot 5-1)=1+3+5+7+9$

Recall the Peano definition of \mathbb{W}. Similarly for \mathbb{N} : $n \in \mathbb{N}$ if $n=1$ or $n=x+1$ for some $x \in \mathbb{N}$.

$$
\forall n \in \mathbb{N}, \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

$$
\forall n \in \mathbb{N}, \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Proof. Suppose $n \in \mathbb{N}$. Then either $n=1$ or there exists $n \in \mathbb{N}$ such that $n=x+1$.
Base case. Suppose $n=1$. Then

$$
\sum_{i=1}^{n}(2 i-1)=2-1=1=1^{2}
$$

Inductive case. Suppose $n=x+1$ such that $x \in \mathbb{N}$ and $\sum_{i=1}^{x}(2 i-1)=x^{2}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}(2 i-1) & =2 n-1+\sum_{i=1}^{n-1}(2 i-1) & & \text { by definition of summation } \\
& =2 n-1+\sum_{i=1}^{x}(2 i-1) & & \text { by substitution } \\
& =2 n-1+x^{2} & & \text { by the inductive hypothesis } \\
& =2 n-1+(n-1)^{2} & & \text { by substitution } \\
& =2 n-1+n^{2}-2 n+1 & & \text { by algebra (FOIL) } \\
& =n^{2} & & \text { by algebra (cancellation) } \square
\end{aligned}
$$

$$
\begin{array}{ll}
4 \mid 0 & 0+1=1=5^{0} \\
4 \mid 4 & 4+1=5=5^{1} \\
4 \mid 24 & 24+1=25=5^{2} \\
4 \mid 124 & 124+1=125=5^{3} \\
4 \mid 624 & 624+1=625=5^{4}
\end{array}
$$

Conjecture: $\quad \forall n \in \mathbb{W}, 4 \mid 5^{n}-1$
$\forall n \in \mathbb{W}, 4 \mid 5^{n}-1$
$\forall n \in \mathbb{W}, 4 \mid 5^{n}-1$
Proof. By induction on n.
Base case. Suppose $n=0$. Then $5^{0}-1=1-1=0=4 \cdot 0$. Hence $4 \mid 5^{0}-1$ by the definition of divides.

Inductive case. Suppose $n>0$ and $4 \mid 5^{n-1}-1$.
Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^{n-1}-1=4 k$. Moreover,

$$
\begin{array}{rlrl}
5^{n}-1 & =5 \cdot 5^{n-1}-1 & & \text { by algebra, unless otherwise noted... } \\
& =5 \cdot\left(5^{n-1}-1+1\right)-1 & & \\
& =5(4 k+1)-1 & & \text { by the inductive hypothesis } \\
& =5 \cdot 4 \cdot k+5-1 & & \\
& =5 \cdot 4 \cdot k+4 & & \\
& =4(5 k+1) &
\end{array}
$$

Hence $4 \mid 5^{n}-1$ by definition of divides.
$\forall n \in \mathbb{W}, 4 \mid 5^{n}-1$
Proof. By induction on n.
Base case. Suppose $n=0$. Then $5^{0}-1=1-1=0=4 \cdot 0$. Hence $4 \mid 5^{0}-1$ by the definition of divides.

Inductive case. Suppose $4 \mid 5^{n}-1$ for some $n \geq 0$.
Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^{n}-1=4 k$. Moreover,

$$
\begin{array}{rlrl}
5^{n+1}-1 & =5 \cdot 5^{n}-1 & \text { by algebra, unless otherwise noted. } . . \\
& =5 \cdot\left(5^{n}-1+1\right)-1 & \\
& =5(4 k+1)-1 & & \\
& =5 \cdot 4 \cdot k+5-1 & & \\
& =5 \cdot 4 \cdot k+4 & \\
& =4(5 k+1) &
\end{array}
$$

Hence $4 \mid 5^{n+1}-1$ by definition of divides.

To prove $\forall n \in \mathbb{W}, I(n)$,

- Show I(0)
- Show $\forall n \in \mathbb{W}, I(n) \rightarrow I(n+1)$, that is Suppose $n \geq 0$ such that $I(n)$
$I(n+1)$
Alternately, show $\forall n \in \mathbb{W}$ such that $n>0, I(n-1) \rightarrow I(n)$, that is Suppose $n \geq 0$ such that $I(n-1)$

I(n)

- Conlude $\forall n \in \mathbb{W}, I(n)$

The principle of mathematical induction is

$$
[I(0) \wedge \forall n \in \mathbb{W}, I(n) \rightarrow I(n+1)] \quad \rightarrow \quad[\forall n \in \mathbb{W}, I(n)]
$$

$$
\begin{array}{ll}
\sum_{i=1}^{1} i=1 & =1=\frac{1 \cdot 2}{2} \\
\sum_{i=1}^{2} i=1+2 & =3=\frac{2 \cdot 3}{2} \\
\sum_{i=1}^{3} i=1+2+3 & =6=\frac{3 \cdot 4}{2} \\
\sum_{i=1}^{4} i=1+2+3+4 & =10=\frac{4 \cdot 5}{2} \\
\sum_{i=1}^{5} i=1+2+3+4+5 & =15=\frac{5 \cdot 6}{2}
\end{array}
$$

Ex 6.5.1. $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

Ex 6.5.1. $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
Proof. By induction on n.
Base case. Suppose $n=1$. Then $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$. Inductive case. Suppose that for some $n \geq 1, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$. Then

$$
\begin{array}{rlrl}
\sum_{i=1}^{n+1} i & =n+1+\sum_{i=1}^{n} i & & \text { by definition of summation } \\
& =n+1+\frac{n(n+1)}{2} & & \text { by the inductive hypothesis } \\
& =\frac{2 n+2+n^{2}+n}{2} & \text { by algebra } \\
& =\frac{n^{2}+3 n+2}{2} & " \\
& =\frac{(n+1)(n+2)}{2} & "
\end{array}
$$

Observe:

\[

\]

Conjecture: For any finite set $A,|\mathscr{P}(A)|=2^{|A|}$.
Theorem 6.5. For all $n \in \mathbb{W}$, if A is a set such that $|A|=n$, then $|P(A)|=2^{n}$.

Theorem 6.5. For all $n \in \mathbb{W}$, if A is a set such that $|A|=n$, then $|\mathscr{P}(A)|=2^{n}$.
Proof. By induction on n.
Base case. Suppose $n=0$. Then $A=\emptyset$, and $|\mathscr{P}(A)|=|\{\emptyset\}|=1=2^{0}$. Inductive case. Suppose for some $n \geq 0$, if A is a set such that $|A|=n$, then $|\mathscr{P}(A)|=2^{n}$. Suppose further than A is a set such that $|A|=n+1$.

Since $|A|>0$, let $a \in A$. By Corollary 4.12, $\mathscr{P}(A-\{a\})$ and $\{C \cup\{a\} \mid C \in$ $\mathscr{P}(A-\{a\})\}$ make a partition of $\mathscr{P}(A)$. Then

$$
\begin{array}{rlrl}
|\mathscr{P}(A-\{a\})|= & |\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}| & & \text { by Exercise 7.9.6 } \\
|A-\{a\}|= & |A|-|\{a\}| & & \text { since }\{a\} \subseteq A \text {, and by Ex 7.9.1 } \\
=n+1-1 & & \text { by supposition } \\
=n & & \text { by arithmetic } \\
|\mathscr{P}(A-\{a\})|= & 2^{n} & & \text { by the inductive hypothesis } \\
|\mathscr{P}(A)|= & |\mathscr{P}(A-\{a\})| & & \\
& +|\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}| & & \text { by Theorem } 7.12 \\
= & 2^{n}+2^{n} & & \text { by substitution } \\
= & 2^{n+1} & & \text { by algebra. }
\end{array}
$$

Iterated union (similar for intersection):

$$
\text { Ex 6.6.1. } \forall n \in \mathbb{N}, \bigcup_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n} \overline{A_{i}} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

Proof. By induction on n.
Base case. Suppose $n=1$. Then

$$
\overline{\bigcup_{i=1}^{1} A_{i}}=\overline{A_{i}}=\bigcap_{i=1}^{1} \overline{A_{1}}
$$

Inductive case. Suppose $\bigcup_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n} \overline{A_{i}}$ for some $n \geq 1$. Then

$$
\begin{aligned}
\overline{\bigcup_{i=1}^{n+1} A_{i}} & =\overline{A_{n+1} \cup \bigcup_{i=1}^{n} A_{i}} \quad \text { by definition of iterated union } \\
& =\overline{A_{n+1}} \cap \overline{\bigcup_{i=1}^{n} A_{i}} \quad \text { by Ex 4.3.13 (DeMorgan's law of sets) } \\
& =\overline{A_{n+1}} \cap \bigcap_{i=1}^{n} \overline{A_{i}} \\
& \text { by the inductive hypothesis } \\
& =\bigcap_{i=1}^{n+1} \overline{A_{i}} \quad \text { by the definition of iterated intersection }
\end{aligned}
$$

For next time:

Pg 273: 6.5.(2 \& 4)
Pg 278: 6.6.(2 \& 3)
Read 6.9 carefully
Skim 6.10
Take quiz

