Chapter 5 roadmap:

- Introduction to relations (Wednesday before break)
- Properties of relations (Friday before break and this week Monday)
- Transitive closure (this week Wednesday)
- Partial order relations (Today)
- Review for Test 2 (next week Monday)
- Test 2 on Chapters 4 \& 5 (next week Wednesday)

Today:

- Antisymmetry
- Partial order relations
- Topological sort

Project prototype due Wed, Apr 3

symmetric
All arrows
have a back arrow.

asymmetric
(not symmetric)
There exists an arrow without a back arrow.

antisymmetric ("very" not symmetric)
No arrows have back arrows except self loops.

Formal definition:
A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then $x=y$.

Informal definition:
If both an arrow and its reverse exist in an antisymmetric relation R, then that arrow must be a self loop (and, hence, it is its own reverse).

Alternate formal definition:
A relation R on a set X is antisymmetric if $\forall(x, y) \in R$, either $x=y$ or $(y, x) \notin R$.

Rock beats scissors; scissors beats paper; paper beats rock.
Grasshopper eats corn; mouse eats corn; mouse eats grasshopper; snake eats mouse; hawk eats mouse; hawk eats snake.

Aurelia is better than Gwendolyn at pitching; Gwendolyn is better than Aurelia at batting.

Peter Pan is shorter than Treasure Island; Treasure Island is shorter than Anna Karenina; Anna Karenina is shorter than The Count of Monte Christo.

CSCI 235 is a prereq for CSCI 245 ; CSCI 245 is a rereq for CSCI 345 ; CSCI 243 is a prereq for CSCI 345; MATH 231 is a prereq for MATH 245; CSCI 345 is a prereq for CSCI 381; MATH 245 is a prereq for CSCI 381.

I married a widow with a grown daughter; my father, a widower, then married my step-daughter. Thus I am my own step-grampa. (The relation in this example is "is biological ancestor of or step-ancestor of'.)

A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then $x=y$.

Ex 5.8.9. Prove that \mid (divides) on \mathbb{N} is antisymmetric.
Proof. Suppose $x, y \in \mathbb{N}, x \mid y$, and $y \mid x$ (that is, $(x, y),(y, x) \in \mid$). By definition of divides, there exists $i, j \in \mathbb{N}$ such that

$$
\begin{aligned}
& x=i \cdot y \\
& y=j \cdot x
\end{aligned}
$$

Then

$$
\begin{aligned}
x & =i \cdot j \cdot x & & \text { by substitution } \\
1 & =i \cdot j & & \text { by cancellation } \\
i & =j=1 & & \text { by arithmetic } \\
x & =y & & \text { by identity }
\end{aligned}
$$

Therefore | is antisymmetric by definition.

Antisymmetry:
A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then $x=y$.

Partial order relation:
A partial order relation (or just partial order) is a relation that is reflexive, transitive, and antisymmetric.
A strict partial order (relation) is a relation that is irreflexive, transitive and antisymmetric.

Partially ordered set:
A partially ordered set or poset is a set together with a partial order on that set.

$$
R=\{(a, a),(a, b),(a, c),(a, d),(b, b),(b, d),(c, c),(c, d),(d, d)\}
$$

Comparable: $a \preceq c, d \preceq f, e \preceq f, e \preceq h, c \preceq i$
Not comparable: a and $b ; d$ and $e ; f$ and h
Maximal and greatest: i
Minimal: a and b
No least

Everyday examples: Preparing a meal, writing a term paper, getting dressed

A partial order R on a set X is a total order if for all $x, y \in X$, either $x \preceq y$ or $y \preceq x$, that is, x and y are comparable.

Standard example of a total order: \leq.

A partial order relation (or just partial order) is a relation that is reflexive, transitive, and antisymmetric.

A partial order R on a set X is a total order if for all $x, y \in X$, either $x \preceq y$ or $y \preceq x$, that is, x and y are comparable.

A topological sort of a partial order R is a total order that is a superset of R.
| (divides)
is prerequisite for Ralph takes before
can put on before you put on before

$R=\{(a, a),(a, b),(a, c),(a, d),(b, b),(b, d),(c, c),(c, d),(d, d)\}$
A topological sort for $R: R \cup\{(b, c)\}$, written as a, b, c, d
Another topological sort for $R: R \cup\{(c, b)\}$, written as a, c, b, d

For next time:
Pg 226: 5.8.(1-5)
Pg 231 5.9.(1 \& 8)
For Friday, Mar 22:
Read 6.(1-3)
Take quiz

