Chapter 4 roadmap:

- Subset proofs (Today)
- Set equality and emptiness proofs (Friday)
- Conditional and biconditional proofs (next week Wednesday)
- Proofs about powersets (new week Fridayday)
- From theorems to algorithms (week-after Monday)

Today:

- Transition point in course
- Game plan for Chapter 4
- Anatomy of a proof
- Proof examples

Project proposal due today, Feb 14.

$$
\begin{aligned}
& \triangle A \cong \triangle B \\
& \angle 1+\angle 2=90^{\circ} \\
& \angle 1+\angle 2^{\prime}=90^{\circ} \\
& \angle 3=90^{\circ} \\
& T \text { is a square } \\
& \text { Area of } T=c^{2} \\
& \text { Area of } S=(a+b)^{2} \\
& \text { Area of each } \triangle=\frac{a b}{2} \\
& (a+b)^{2}=c^{2}+4 \frac{a b}{2} \\
& a^{2}+2 a b+b^{2}=c^{2}+2 a b \\
& \therefore c^{2}=a^{2}+b^{2}
\end{aligned}
$$

SSS
\triangle angles sum to 180° $\angle 2 \cong \angle 2^{\prime}$
Supplementary \angle s
Equal sides, $90^{\circ} \angle$ s
Area of \square
Area of \square
Area of \triangle
Sum of areas
Algebra (FOIL, simplification)
Subtract $2 a b$ from both sides.

General forms:

1. Facts (p) Set forms
2. Subset $X \subseteq Y$
3. Set equality $X=Y$
4. Set emptiness $X=\emptyset$
5. Conditionals $(p \rightarrow q)$
6. Biconditionals $(p \leftrightarrow q)$

$$
\begin{array}{rlrl}
X \cup Y & =\{z \mid z \in X \vee z \in Y\} & X-Y & =\{z \mid z \in X \wedge z \notin Y\} \\
X \cap Y & =\{z \mid z \in X \wedge z \in Y\} & X \times Y=\{(x, y) \mid x \in X \wedge y \in Y\} \\
\bar{X} & =\{z \mid z \notin X\} & &
\end{array}
$$

For next time:

Pg 158:4.2.(2-7)
Review 4.(1 \& 2)
Read 4.(3 \& 4)
Take quiz

