Chapter 3:

- Propositions, booleans, logical equivalence. §3.(1-4) (Today)
- Conditional propositions, conditional expressions. §3.(5-7) (Wednesday)
- Arguments. §3.(8 \& 9) (Friday)
- Predicates and quantification. §3.(10-13) (next week Monday)
- Quantified arguments. §3.14 (next week Wednesday)

Today:

- Highlight main points of §3.(1\&2): Propositions, forms, etc
- Demo SML features from §3.3: Boolean values
- Work through §3.4: Logical equivalences (Game 1)

Which phrase gives the best metaphor for the meaning of "set of sets"?
Champion of champions Horror of horrors
Box of boxes
Friend of a friend

What is the cardinality of $\mathscr{P}(\emptyset)$?

If set X has cardinality n, then what is the cardinality of $\mathscr{P}(X)$?

A proposition is a sentence that is true or false, but not both.
It is snowing and it is not Thursday.
A propositional form is like a proposition but with content replaced by variables.
p and not q
$p \wedge \sim q$

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3 \ldots\} \\
& +-\times \div \\
& \begin{array}{c|llll}
\times & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 4 & 6 \\
3 & 0 & 3 & 6 & 9
\end{array} \\
& \mathbb{B}=\{T, F\} \\
& \vee \wedge \sim \\
& \begin{array}{c|cc}
\wedge & T & F \\
\hline T & T & F \\
F & F & F
\end{array}
\end{aligned}
$$

$$
\begin{array}{c|ccc|cc}
\wedge & T & F & \vee & T & F \\
\hline T & T & F & T & T & T \\
F & F & F & F & T & F
\end{array}
$$

		p	q
p	$\sim p \wedge q$		
	F	T	T
F	T	F	T
		F	T
	F	F	F

$$
\begin{array}{cc||c}
p & q & p \vee q \\
\hline T & T & T \\
T & F & T \\
F & T & T \\
F & F & F
\end{array}
$$

Evaluate (to T or F) this logical expression:
$(T \wedge(\sim F \vee F)) \wedge(T \wedge T)$

Evaluate (to T or F) this logical expression:
$(T \vee F) \wedge \sim(F \wedge T)$

Evaluate (to T or F) this logical expression:
$(F \vee F \vee T) \wedge(\sim T \wedge F)$

p	q	$\sim p$	$\sim q$	$p \wedge q$	$\sim(p \wedge q)$	$\sim p \vee \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

Commutative laws:

$$
p \wedge q \equiv q \wedge p
$$

$$
p \vee q \equiv q \vee p
$$

Associative laws:

$$
(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
$$

$$
(p \vee q) \vee r \equiv p \vee(q \vee r)
$$

Distributive laws:

$$
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \quad p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
$$

Absorption laws:

$$
p \vee(p \wedge q) \equiv p
$$

Idempotent laws:

$$
p \wedge(p \vee q) \equiv p
$$

$$
p \wedge p \equiv p
$$

$$
p \vee p \equiv p
$$

Double negative law:

$$
\sim \sim p \equiv p
$$

DeMorgan's laws:

Negation laws:

$$
\sim(p \wedge q) \equiv \sim p \vee \sim q
$$

$$
p \vee \sim p \equiv T
$$

$$
p \vee T \equiv T
$$

Identity laws:
Tautology and contradiction laws:

$$
p \wedge T \equiv p
$$

$$
\sim T \equiv F
$$

$$
\sim(p \vee q) \equiv \sim p \wedge \sim q
$$

$$
p \wedge \sim p \equiv F
$$

$$
p \wedge F \equiv F
$$

$$
p \vee F \equiv p
$$

$$
\sim F \equiv T
$$

Remember from high school algebra that there are "simplify" problems and "solve" problems.

■ Simplify $3 x(2+3 x)^{2}+1$.

$$
\begin{aligned}
& 3 x(2+3 x)^{2}+1 \\
& =\quad 3 x\left(4+12 x+9 x^{2}\right)+1 \\
& =12 x+36 x^{2}+27 x^{3}+1 \\
& =27 x^{3}+36 x^{2}+12 x+1
\end{aligned}
$$

■ Solve $12 x=57-7 x$ for x.

$$
\begin{aligned}
12 x & =57-7 x \\
19 x & =57 \\
x & =3
\end{aligned}
$$

Suppose we were to show that $\sim(\sim p \wedge q) \vee(p \vee \sim p) \equiv p \vee \sim q$.

Do this:

$$
\begin{array}{ll}
\sim(\sim p \wedge q) \vee(p \wedge \sim p) & \\
\equiv \sim(\sim p \wedge q) \vee F & \text { by negation law } \\
\equiv \equiv \sim(\sim p \wedge q) & \text { by identity law } \\
\equiv p \vee \sim q & \text { by De Morgan's }
\end{array}
$$

Don't do this:

$$
\begin{aligned}
\sim(\sim p \wedge q) \vee(p \wedge \sim p) & \equiv p \vee \sim q \\
\sim(\sim p \wedge q) \vee F & \equiv p \vee \sim q \quad \text { by negation law } \\
\sim(\sim p \wedge q) & \equiv p \vee \sim q \text { by identity law } \\
p \vee \sim q & \equiv p \vee \sim q \text { by De Morgan's }
\end{aligned}
$$

Semester roadmap:
Ch 1 \& 2: Raw materials
Ch 3: Formal logic
—Test 1, Feb 12 -
Ch 4: Proofs
Ch 5: Relations

- Test 2, Mar 20 -

Ch 6: Self reference
Ch 7: Functions

- Test 3, Apr 19 -

Chapter 3 roadmap:
Today: Logical equivalences (Game 1)
Wednesday: Conditionals (SML)
Friday: Arguments (Game 2)
Next week Monday: Predicates and quantification (SML)
Next week Wednesday: Quantified arguments (Game 3)
Next week Friday: Review for test

For next time:

Pg 102: 3.3.(5 \& 6)
Pg 105: 3.4.(2, 4, 8-12)
(See Canvas for a note about 3.4.(2 \& 4))
Read 3.(5-7)
Take quiz

