Chapter 5 roadmap:

- Introduction to relations (Wednesday)
- Properties of relations (Today and Monday after break)
- Transitive closure (Wednesday, Mar 13)
- Partial order relations (Friday, Mar 15)
- Review for Test 2 (Monday, Mar 18s)

Today and next time:

- Review of definitions from last time
- Hints on homework problems
- Properties of relations
- Reflexivity
- Symmetry
- Transitivity
- Proofs
- More proofs

For "next time" (Wed, Mar 13):
Pg 205: 5.3.(5, 11, 14)
Pg 208: 5.4.(3, 4, 5, 22, 24, 25)
Pg 212: 5.5.(7, 9, 10)

But also (for Wed, Mar 15)...:
Read Sec 5.(6 \& 7)
Take quiz

A relation from one set to another

A relation on a set

The image of an element under a relation

The image of a set under a relation

The inverse of a relation

The composition of two relations
$R \quad$ set of pairs
subset of $X \times Y$
$R \subseteq X \times Y$
$R \quad$ set of pairs subset of $X \times X R \subseteq X \times X$
$\mathcal{I}_{R}(a)$ set
.
$\mathcal{I}_{R}(A)$ set
$R^{-1} \quad$ relation
$S \circ R \quad$ relation elation
$i_{X}=\{(x, x) \mid x \in X\}$

The identity relation i_{X} on a set
two hops combined to one hop
(Assume $S \subseteq Y \times Z$)
$S \circ R=\{(a, c) \in X \times Z \mid \exists b \in Y$
$\mid(a, b) \in R \wedge(b, c) \in S\}$

$$
\mid(a, b) \in R \wedge(b, c) \in S\}
$$

everything is related only to itself
set of things that a is related to
$\mathcal{I}_{R}(a)=\{b \in Y \mid(a, b) \in R\}$
set of things that things in A are related to $\mathcal{I}_{R}(A)=\{b \in Y|\exists a \in A|(a, b) \in R\}$
the arrows/pairs of R reversed
$R^{-1}=\{(b, a) \in Y \times X \mid(a, b) \in R\}$
isEnrolledIn, isTaughtBy
eats, divides
classes Bob is enrolled in, numbers that 4 divides
classes Bob, Larry, or Alice are taking, numbers that 2,3 , or 5 divide
hasOnRoster, teaches, isEatenBy, isDivisibleBy
hasAsProfessor, eatsSomethingThatEats $=$

Ex 5.3.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_{R}(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Proof. Suppose R is a relation on A and that $(a, b) \in R$.
[Note that $(a, b) \in R$ implies that both a and b must be elements of A.]
Suppose $x \in \mathcal{I}_{R}(b)$. By definition of image, $(b, x) \in R$. Since $(a, b) \in R$, we have $(a, x) \in R \circ R$ by definition of composition. Moreover $x \in \mathcal{I}_{R \circ R}(a)$ by definition of image.

Therefore $\mathcal{I}_{R}(b) \subseteq \mathcal{I}_{R \circ R}(a)$ by definition of subset.

Ex 5.3.9. Prove that if R is a relation from A to B, then $i_{B} \circ R=R$.

Proof. First suppose $(x, y) \in i_{B} \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_{B}$.

By definition of the identity relation, $b=y$. By substitution, $(x, y) \in R$. Hence $i_{B} \circ R \subseteq R$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.
By definition of the identity relation, $(y, y) \in i_{B}$. By definition of composition, $(x, y) \in i_{B} \circ R$. Hence $R \subseteq i_{B} \circ R$.

Therefore, by definition of set equality, $i_{B} \circ R=R$.

HW. Ex 5.3.8. Is $\mathcal{I}_{R^{-1}}\left(\mathcal{I}_{R}(A)\right) \subseteq A$? \quad Is $A \subseteq \mathcal{I}_{R^{-1}}\left(\mathcal{I}_{R}(A)\right)$?

HW. Ex 5.3.10. $\quad\left(R^{-1}\right)^{-1}=R$.

Reflexivity

Informal
Everything is related to itself

Formal $\quad \forall x \in X,(x, x) \in R$

Visual
 isAquaintedWith

Examples $\subseteq, \leq, \geq, \equiv, i$, isAquaintedWith, waterVerticallyAligned

三, isOppositeOf, isOnSameRiver,

Transitivity

Anything reachable by two hops is reachable by one hop

$$
\begin{array}{ll}
\forall x, y \in X,(x, y) \in R \rightarrow & \forall x, y, z \in X \\
(y, x) \in R & (x, y),(y, z) \in R \rightarrow(x, z) \in R \\
\text { OR } & \text { OR } \\
\forall(x, y) \in R,(y, x) \in R & \forall(x, y),(y, z) \in R,(x, z) \in R
\end{array}
$$

$<, \leq,>, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

Symmetry

All pairs are mutual

Reflexivity

Formal $\quad \forall x \in X,(x, x) \in R$

Analytical use Suppose R is reflexive and $a \in X$.

Then $(a, a) \in R$.
Synthetic use Suppose $a \in X$.
$(a, a) \in R$.
Hence R is reflexive.

Symmetry
$\forall x, y \in X$,
$(x, y) \in R \rightarrow(y, x) \in R$ OR
$\forall(x, y) \in R,(y, x) \in R$
Suppose R is symmetric $[a, b \in X]$
and $(a, b) \in R$.
Then $(b, a) \in R$
Suppose $(a, b) \in R$.
$(b, a) \in R$.
Hence R is symmetric.
$\forall x, y, z \in X$,

Transitivity

$(x, y),(y, z) \in R \rightarrow(x, z) \in R$ OR
$\forall(x, y),(y, z) \in R,(x, z) \in R$
Suppose R is transitive $[a, b, c \in X]$
and $(a, b),(b, c) \in R$.
Then $(a, c) \in R$.
Suppose $(a, b),(b, c) \in R$.
$(a, c) \in R$.
Hence R is transitive.

Theorem 5.5. | (divides) is reflexive.

Exercise 5.4.2. | (divides) is not symmetric.

Theorem 5.6. $R \cap R^{-1}$ is symmetric.

Theorem 5.7. | is transitive.

Exercise 5.4.20. $R^{-1} \circ R$ is reflexive. (False)

Exercise 5.4.21. If R and S are both reflexive, then $R \cap S$ is reflexive.

Exercise 5.4.23. If R and S are both symmetric, then $(S \circ R) \cup(R \circ S)$ is symmetric.

Based on Exercise 5.5.5. If R is transitive, then $R \circ R \subseteq R$.

Exercise 5.4.27. If R is transitive, $\mathcal{I}_{R}\left(\mathcal{I}_{R}(A)\right) \subseteq \mathcal{I}_{R}(A)$.

Exercise 5.5.4. If R is reflexive and

(for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(c, a) \in R$), then R is an equivalence relation.

Exercise 5.5.8. If R and S are equivalence relations, then $S \circ R$ is an equivalence relation. (True or false?)

Exercise 5.5.6. If R is an equivalence relation and $(a, b) \in R$, then $\mathcal{I}_{R}(a)=\mathcal{I}_{R}(b)$.

For next time (Wed, Mar 13):
Pg 205: 5.3.(5, 11, 14)
Pg 208: 5.4.(3, 4, 5, 22, 24, 25)
Pg 212: 5.5.(7, 9, 10)

But also (for Wed, Mar 13)....
Read Sec 5.(6 \& 7)
Take quiz

