Semester roadmap:

Ch 1 \& 2: Raw materials
Ch 3: Formal logic
—Test 1, Feb 12 -
Ch 4: Proofs
Ch 5: Relations

- Test 2, Mar 20 -

Ch 6: Self reference
Ch 7: Functions

- Test 3, Apr 19 -

Chapter 6 roadmap:

- Recursive definitions, recursive types (Today)
- Recursive proofs I: Structural induction (next week Monday)
- Recursive proofs II: Mathematical induction (next week Wednesday)
- Recursive proofs III: Loop invariants (week-after Monday and Wednesday)

Project prototype due Wed, Apr 3

Axiom 7

There exists a whole number 0 .
Axiom 8
Every whole number n has a successor, succ n.
Axiom 9
No whole number has 0 as its successor.
Axiom 10
If $a, b \in \mathbb{W}$, then $a=b$ iff succ $a=\operatorname{succ} b$.

A whole number is either zero or one more than another whole number.

Compare to:
A list is either empty or an element together with its following list.

5 is a whole number because

5 is a whole number because it is the successor of 4 , which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of 3 , which is a whole number because

5 is a whole number because it is the successor of 4, which is a whole number because it is the successor of 3 , which is a whole number because it is the successor of 2 , which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of
3 , which is a whole number because it is the successor of
2, which is a whole number because it is the successor of 1 , which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of 3 , which is a whole number because it is the successor of

2, which is a whole number because it is the successor of 1 , which is a whole number because it is the successor of 0 , which is a whole number by Axiom 7.

HOOOHOO	0101
HOOOOOOD	110

Hololer HOHO
HOOOOCOOS

HOOOH	100010
OOOOOOOOOD	1

\qquad
OOOODOOOOI

Lemmas for addition:

- $0+b=b$
- $a+0=a$
- $a+b=(a+1)+(b-1)$

Lemmas for subtraction:

- $a-0=a$
- $a-b=(a-1)-(b-1)$

Lemmas for multiplication:

- $a \cdot 0=0$
- $0 \cdot b=0$
- $a \cdot 1=a$
- $a \cdot b=a+(a \cdot(b-1))$

Tree

Full Binary Tree

Expression trees:

```
datatype operation = Plus | Minus | Mul | Div;
datatype expression = Internal of operation * expression * expression
    | Leaf of int;
((5-7)*((3+2)/8))
val exprExample = Internal(Mul, Internal(Minus,Leaf(5), Leaf(7)),
                                    Internal(Div,
                                    Internal(Plus, Leaf(3),
                                    Leaf(2)),
                            Leaf(8)));
5
```



```
8
```


For next time:

Pg 260: 6.2.(6-8, 14-17)
Read 6.4
Take quiz

