Chapter 4 roadmap:

- Subset proofs (week-before Wednesday)
- Set equality and emptiness proofs (week-before Friday)
- Conditional and biconditional proofs (last week Wednesday)
- Proofs about powersets (last week Friday)
- ► From theorems to algorithms (**Today**)
- ► (Start Chapter 5 relations next time)

Today: Two programming topics

- ► Hint on HW problem
- From theorems to algorithms
 - Greatest common divisor
 - Exponentiation
 - ► The quotient-remainder theorem
- Bull and cows

Lemma (4.13. Termination)

If $a \in \mathbb{N}$, then gcd(a, 0) = a.

Lemma (4.14. Progress)

If $a, b \in \mathbb{N}$, $q, r \in \mathbb{W}$, and $a = b \cdot q + r$, then $\gcd(a, b) = \gcd(b, r)$.

Ex 4.10.5 (rewritten). Consider the lemmas

Lemma (Invariant and termination.)

If $n, d \in \mathbb{N}$, then there exist unique $q, r \in \mathbb{W}$ such that $n = d \cdot q + r$ and $0 \le r [< d]$.

Lemma (Progress.)

If $n, d \in \mathbb{N}$ and $q, r \in \mathbb{W}$, then $d \cdot q + r = d \cdot (q + 1) + (r - d)$.

Write a function quotRem that takes natural numbers n and d and computes the quotient and remainder of n divided by d using the lemmas above.

For next time:

Pg 177: 4.10.(3, 4, 6)

For exercise 4.10.3, name the function pow.

For exercise 4.10.4, name the function mul.

See Canvas for an important correction to Ex 4.10.6

Read carefully 5.1

Read 5.(2 & 3)

Take quiz