Chapter 4 roadmap:

- Subset proofs (week-before Wednesday)
- Set equality and emptiness proofs (week-before Friday)
- Conditional and biconditional proofs (last week Wednesday)
- Proofs about powersets (last week Friday)
- From theorems to algorithms (Today)
- (Start Chapter 5 relations next time)

Today: Two programming topics

- Hint on HW problem
- From theorems to algorithms
- Greatest common divisor
- Exponentiation
- The quotient-remainder theorem
- Bull and cows

Lemma (4.13. Termination)
If $a \in \mathbb{N}$, then $\operatorname{gcd}(a, 0)=a$.

Lemma (4.14. Progress)
If $a, b \in \mathbb{N}, q, r \in \mathbb{W}$, and $a=b \cdot q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Ex 4.10.5 (rewritten). Consider the lemmas

Lemma (Invariant and termination.)
If $n, d \in \mathbb{N}$, then there exist unique $q, r \in \mathbb{W}$ such that $n=d \cdot q+r$ and $0 \leq r[<d]$.
Lemma (Progress.)
If $n, d \in \mathbb{N}$ and $q, r \in \mathbb{W}$, then $d \cdot q+r=d \cdot(q+1)+(r-d)$.
Write a function quotRem that takes natural numbers n and d and computes the quotient and remainder of n divided by d using the lemmas above.

For next time:

Pg 177: 4.10. $(3,4,6)$
For exercise 4.10.3, name the function pow.
For exercise 4.10.4, name the function mul.
See Canvas for an important correction to Ex 4.10.6
Read carefully 5.1
Read 5.(2 \& 3)
Take quiz

