Chapter 1 outline:

- Introduction, sets and elements (this past Monnday)
- Set operations; visual verification of set propositions (Today)
- Introduction to SML; cardinality and Cartesian products (Friday)
- Making types in SML (next week Wednesday)
- Making functions in SML (next week Friday)

Today:

- Set symbols and terminology
- Set notation
- Set operations
- Verifying set equivalence visually

5 is a natural number; or the collection of natural numbers contains 5 .

Adding 0 to the collection of natural numbers makes the collection of $\mathbb{N} \cup\{0\}=\mathbb{W}$ whole numbers.

Merging the algebraic numbers and the transcendental numbers makes $\mathbb{A} \cup \mathbb{T}=\mathbb{R}$ the real numbers.

Transcendental numbers are those real numbers which are not algebraic $\mathbb{T}=\mathbb{R}-\mathbb{A}$ numbers.

Nothing is both transcendental and algebraic, or the collection of things both transcendental and algebraic is empty.

Negative integers are both negative and integers.

All integers are rational numbers.
$\mathbb{Z}^{-}=\mathbb{Z} \cap \mathbb{R}^{-}$

Since all rational numbers are algebraic numbers and all algebraic numbers are real numbers, it follows that all rational numbers are real num-
$\mathbb{T} \cap \mathbb{A}=\emptyset$ bers.

Axiom (Existence.)

There is a set with no elements.
Axiom (Extensionality.)
If every element of a set X is an element of a set Y and every element of Y is an element of X, then $X=Y$.

Union

$A \cup B=\{x \mid x \in A$ or $x \in B\}$

Intersection

$A \cap B=\{x \mid x \in A$ and $x \in B\}$

$$
\begin{aligned}
\{1,2,3\} \cap\{2,3,4\} & =\{2,3\} \\
\{1,2\} \cap\{3,4\} & =\emptyset \\
\{1,2\} \cap\{1,2,3\} & =\{1,2\}
\end{aligned}
$$

$$
\begin{aligned}
\{1,2,3\} \cup\{2,3,4\} & =\{1,2,3,4\} \\
\{1,2\} \cup\{3,4\} & =\{1,2,3,4\} \\
\{1,2\} \cup\{1,2,3\} & =\{1,2,3\}
\end{aligned}
$$

Difference

$A-B=\{x \mid x \in A$ and $x \notin B\}$

$$
\begin{aligned}
\{1,2,3\}-\{2,3,4\} & =\{1\} \\
\{1,2\}-\{3,4\} & =\{1,2\} \\
\{1,2\}-\{1,2,3\} & =\emptyset
\end{aligned}
$$

1. $\{1,2,3,4,5\} \cup\{5,6,7\}=$
2. $\{1,2,3,4,5\} \cap\{2,4,6,8,10\}=$
3. $\{1,2,3,4,5\}-\{2,3,4\}=$
4. $\{1,2,3,4,5\}-\{3,4,5,6,7\}=$

Which of the following are equal to $\{1,2,3,4\}$?

- $\{1,2\} \cup\{3,4\}$
- $\{1,2,3\} \cup\{4\}$
- - $\{1,2,3\} \cup\{2,3,4\}$
- $\{1,2,3\} \cup\{3,4,5\}$
- $\{2,3\} \cup\{1,4\}$
- $\{1\} \cup\{3,4\}$
- $\{4,3,2,1\}$
- $\{1\} \cup\{1,2\} \cup\{1,2,3\} \cup\{1,2,3,4\}$

1.4.7. $(A \cap B)-A$

1.4.8. $(A-B) \cup(B-A)$

1.4.9. $(A \cup B) \cap(A \cup C)$

1.4.10. $\overline{(A \cap B)} \cap(A \cup C)$

$A \cup(A \cap B)=A$

$A \cup \bar{A}=\mathcal{U}$

$A \cup(B \cup C)=(A \cup B) \cup C$

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$A \cap B=A-(A-B)$

$(A \cap C)-(C-B)=A \cap B \cap C$

$A \cup(A-B)=A$

$(A \cup(B-C)) \cap \bar{B}=A-B$

For next time:

Pg 12: 1.3.(11-14, 16)
Pg 16: 1.4.(1-6, 19)
Pg 20: 1.5.(8-11)
Read 1.(6-9)
Take quiz

