
Prolegomena unit outline:

▶ Algorithms and correctness (today and Friday)

▶ Algorithms and efficiency (all next week)

▶ Abstract data types (Mon, Jan 22)

▶ Data Structures (Jan 24 and 26)

Today:

▶ Bounded linear search problem

▶ Check-sorting problem

▶ “Binary search” problem



1. The correctness of an algorithm can be verified formally using loop invariants and
other proof techniques and empirically using unit tests.

2. The efficiency of an algorithm can be measured formally using algorithmic analysis,
big-oh categories, etc, and empirically by running experiments.

formally empirically

Correctness, verified by invariants and by unit tests
and correctness proofs

Efficiency, measured by big-oh categories and by experiments
and related notation



Given a list sequence and a predicate P, return the index of the first element for
which the predicate holds, or −1 if none exists. Formally, return

−1 if ∀ j ∈ [0, n),∼ P(sequence[j ])

k otherwise, where P(sequence[k])
and ∀ j ∈ [0, k),∼ P(sequence[j ])



Given a list sequence and a predicate P, return the index of the first element for which
the predicate holds, or −1 if none exists. Formally, return

−1 if ∀ i ∈ [0, n),∼ P(sequence[i ])

k otherwise, where P(sequence[k])
and ∀ i ∈ [0, k),∼ P(sequence[i ])

Invariant 1 (Loop of bounded linear search.)

(a) ∀ j ∈ [0, i− 1),∼ P(sequence[j ])

(b) found iff P(sequence[i− 1])

(c) i is the number of iterations completed.



(a) ∀ j ∈ [0, i− 1),∼ P(sequence[j ])

(b) found iff P(sequence[i− 1])

(c) i is the number of iterations completed.

Initialization.

(a) Since i is initially 0, the range [0, i) = [0, 0) which is empty. Hence the
proposition is vacuously true.

(b) With i = 0, sequence[i− 1] doesn’t exist. However, it’s reasonable to interpret
P(undef ) as false, which makes this part of the invariant hold.

(c) There have been 0 iterations, and i = 0.



(a) ∀ j ∈ [0, i− 1),∼ P(sequence[j ])

(b) found iff P(sequence[i− 1])

(c) i is the number of iterations completed.

Maintenance. Since the variable i itself changes during the execution of an iteration,
we distinguish between its value when the iteration starts from its value when the
iteration finishes by ipre and ipost, respectively. Note that ipost = ipre + 1. Similarly
distinguish foundpre and foundpost

(a) It must be that ∼ foundpre or else the guard would have failed and the loop
would have terminated before this iteration. Thus ∼ P(sequence[ipre − 1]), by
the inductive hypothesis, part b. Together with the fact that that
∀ j ∈ [0, ipre − 1),∼ P(sequence[j ]), we now have
∀ j ∈ [0, ipre),∼ P(sequence[j ]), that is ∀ j ∈ [0, ipost − 1),∼ P(sequence[j ]).

(b) Immediate from the assignment to found.

(c) Immediate from the update to i . □



Correctness Claim 1 (bounded linear search.)

After at most n iterations, bounded linear search will return as specified.

Proof. By Invariant 1.c, after at most n iterations, i = n and the guard will fail.
Moreover, when the guard fails, either found or i = n. Consider the cases of found
and ∼ found.
Case 1. Suppose found. Then we return i − 1. Invariant 1.a tells us that nothing in
[0, i− 1) satisfies P. Invariant 1.b tells us that i− 1 does. Together these fulfill the
second part of the specification: i− 1 is the first item satisfying P, and we return it.
Case 2. Suppose ∼ found. By elimination i = n. Invariant 1.a tells us that nothing
in [0, n − 1) satisfies P. Invariant 1.b tells us that i− 1, that is, n − 1, also does not
satisfy P. We return −1, fulfilling the first part of the specification. □



Given a list sequence and a total order, determine whether sequence is sorted by the
given total order.



Given a list sequence sorted by a given total order TO and given an item, return

−1 if ∀ i ∈ [0, n), sequence[i ] ̸= item

k otherwise, where sequence[k] = item



Given a list sequence sorted by a given total order TO and given an item, return

−1 if ∀ i ∈ [0, n), sequence[i ] ̸= item

k otherwise, where sequence[k] = item

Invariant 3 (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [start, stop) such that
item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [start, stop) such that item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.

Initialization.

(a) Initially start = 0 and stop = n, so the hypothesis and conclusion are identical.

(b) No iterations yet, so

stop− start = n − 0 = n =
n

1
=

n

20



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [start, stop) such that item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.

Maintenance. Distinguish startpre and startpost, stoppre and stoppost. Let i be
the number of iterations completed. We’re given that if ∃ j ∈ [0, n) such that
item = sequence[j ], then ∃ j ∈ [startpre, stoppre) such that item = sequence[j ];
also that stoppre− startpre ≤ n

2i−1 (this is our inductive hypothesis). The guard also
assures us that stoppre − startpre > 1.
We have three possibilities, corresponding to the if-elif-else:



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [start, stop) such that item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.

Case 1: Suppose item < sequence[mid].

(a) Since sequence is sorted, ∀ j ∈ [mid, stoppre), item < sequence[j ]. Thus if
∃ j ∈ [startpre, stoppre), then ∃ j ∈ [startpre, mid), that is (with the update
to stop but not to start), ∃ j ∈ [startpost, stoppost)
Now, by transitivity of the conditional, if ∃ j ∈ [0, n) such that
item = sequence[j ], then ∃ j ∈ [startpost, stoppost) such that
item = sequence[j ].

(b) If the length of the range is odd, then the sub-ranges above and below mid are of
equal size, each half of the range length minus one. If the range length is even,
then the lower subrange is half that size and the upper subrange is one less than
half. Either way we throw away at least half and keep no more than half. So,

stoppost − startpost ≤
1

2
· (stoppre − startpre) ≤

1

2
· n

2i−1
≤ n

2i



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [start, stop) such that item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.

Case 2: Suppose item = sequence[mid].

(a) Immediately we have ∃ j ∈ [mid, mid+ 1), and, with the update to stop and
start, that means ∃ j ∈ [startpost, stoppost). Moreover, the conditional is
T → T ≡ T .

(b) Note stoppost− startpost = 1. Earlier we said 1 < stoppre − startpre ≤ n
2i−1 .

Since stoppre − startpre must be a whole number, 2 ≤ n
2i−1 , and so 1 ≤ n

2i
.

Finally stoppost − startpost ≤ n
2i
.

Case 3: Suppose item > sequence[mid]. This is similar to Case 1. □



Correctness Claim 3 (binary search.)

After at most lg n iterations, binary search returns as specified.

Proof. Suppose i ≥ lg n. Then 2i ≥ n and n
2i

≤ 1. Hence stop− start ≤ 1 and the
guard fails.
Invariant 3.a still means that if the item is anywhere, it’s in the range. The guard
implies that on loop exit the range has size 0 or 1.
Suppose the range has size 0. Then the item isn’t in the range (since nothing is), and
thus it isn’t anywhere. Since stop = start, the first part of the conditional fails and
and −1 is returned, as specified.
On the other hand, suppose the range has size 1. We still don’t know if the item is in
the range, but we have only one location to check. If it’s in sequence[start], then
we return start, which meets the specification. Otherwise the second part of the
condition fails and −1 is returned, as specified. □



Invariant 3 (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [start, stop) such that
item = sequence[j ].

(b) After i iterations, stop− start ≤ n
2i
.

Invariant 4 (Preconditions of binary search recursive)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [start, stop) such that
item = sequence[j ].

(b) start ≤ stop



Coming up:

Do the pretest project (due today—but you can still fix it up)

Due Thursday Jan 16 (end of day)
Read Section 1.2 (long section—spread it out)
Do Exercise 1.(6)—submit through Canvas
Take quiz


