Chapter 4, Graphs:

- Concepts and implementation (Today)
- Traversal (next week Monday and in lab Thursday)
- Minimum spanning trees (next week Wednesday and Friday)
- Single-source shortest paths (Feb 21 and 23)

Today:

- Recent quiz questions
- Applications of graphs
- Vocabulary, taxonomy, and theory
- Representing and implementing graphs

Indicate the worst case running time for each operation in each implementation of a priority queue.

ListPriorityQueue SortedListPriorityQueue HeapPriorityQueue

insert ()	$\Theta(1)$	$\Theta(n)$	$\Theta(\lg n)$
$\max ()$	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
extractMax ()	$\Theta(n)$	$\Theta(1)$	$\Theta(\lg n)$
contains ()	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

3.26 In the NaiveNSet, why does the add() method have an @Override annotation but range(), complement(), union(), intersection(), and difference() do not?
3.27 Explain the +1 in the array creation new byte[range / $8+1$] in the BitVecNSet constructor.

Water
Carbon dioxide

Propane

- Graph
- Vertex (compare node)
- Edge (compare link)
- Incident
- Adjacent
- Degree
- Complete
- Dense
- Sparse
- Directed graph
- Undirected graph
- Parallel edge
- Self loop
- Simple graph
- Weighted graph

Adjectives

Trivial Having only one vertex and no edges.
Simple Having no repeated vertices (except, possibly, the initial and terminal).
Closed Having the same vertex as initial and terminal.

Nouns

Walk An alternating sequence of vertices and edges, each edge coming between its end points.
Path A walk with no repeated edge (repeated vertices are ok).
Circuit A closed path (no repeated edges, initial and terminal the same).
Cycle A simple circuit (no repeated edges or vertices, except the initial and terminal, which are the same).

Adjacency matrix

Space
adjacent(u, v)
getAdjacents(u)
$\Theta\left(V^{2}\right)$ $\Theta(V+E)$
$\Theta(\operatorname{deg}(u))$ (expected case)
$\Theta(\operatorname{deg}(u))$

Coming up:

Do heaps and priority queue project (suggested by Mon, Feb 13) Do bit vector and N-set project (suggested by Wed, Feb 15)

Due Wed, Feb 15 (but spread it out):
Read Section 4.(1-3)
Do Exercises 4.(26-29).
Take graph quiz

