Chapter 5, Dynamic Programming:

- Introduction and sample problems (week-before Friday)
- Principles of DP (last week Monday)
- DP algorithms, solutions to sample problems (last week Wednesday
- Coding up DP algorithms (lab Thursday)
- Begin optimal BSTs (Today)
- Finish optimal BSTs/review for test (Wednesday)
- [Test 2, Thurs, Apr 4, not covering DP]

Today:

- The optimal BST definition
- The optimal-BST-building problem
- The dynamic programming solution

Coming up:
Due Tues, Apr 2 (end of day)
Read Section 6.5
(No quiz on Section 6.5)
Due Mon, Apr 8 (end of day)
Read Sections 7.(1 \& 2)
Take quiz
Do Optimal BST project (Due Mon, Apr 8)

Why this problem?

- It connects dynamic programming with the quest for a better map.
- Its hardness is in the right places (building the table-hard; reconstructing solution-trivial).
- It is a representative of a bigger concept: What if we had more information-how would that change the problem.

Game plan:

- Understand the problem itself
- Understand the recursive characterization
- Understand the table-building algorithm

The optimal binary search tree problem:

- Assume we know all the keys $k_{0}, k_{1}, \ldots k_{n-1}$ ahead of time.
- Assume further that we know the probabilities $p_{0}, p_{1}, \ldots p_{n-1}$ of each key's lookup.
- Assume even further that we know the "miss probabilities" $q_{0}, q_{1}, \ldots q_{n}$ where q_{i} is the probability that an extraneous key falling between k_{i-1} and k_{i} will be looked up.
- We want to build a tree to minimize the expected cost of a look up, which is the total weighted depth of the tree:

$$
\sum_{i=0}^{n-1} p_{i} \operatorname{depth}\left(k_{i}\right)+\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(m_{i}\right)
$$

where depth (x) is the number of nodes to be inspected on the route from the root to node x, k_{i} stands for the node containing key k_{i} [notational abuse], and m_{i} is the dummy node between keys k_{i-1} and and k_{i}.

- Note that the rules of probability require $\sum_{i=0}^{n-1} p_{i}+\sum_{i=0}^{n} q_{i}=1$

i	84	eat	24	ham	10	fox	7	rain	4
not	83	will	21	there	9	on	7	see	4
them	61	sam	19	train	9	tree	6	try	4
a	59	with	19	anywhere	8	say	5	boat	3
like	44	am	16	house	8	so	5	that	3
in	40	could	14	mouse	8	be	4	are	2
do	36	here	11	or	8	goat	4	good	2
you	34	the	11	box	7	let	4	thank	2
would	26	eggs	10	car	7	may	4	they	2
and	24	green	10	dark	7	me	4	if	1

Key or miss event combined frequency

$1 \cdot .02+1 \cdot .081$
$=.101$

1
.02 .081
$2 \cdot .02+2 \cdot .081$
$+1 \cdot .103+1 \cdot .122$
$=.427$

$$
\begin{aligned}
& 3 \cdot .02+3 \cdot .081 \\
& +2 \cdot .103+2 \cdot .122 \\
& +1 \cdot .001+1 \cdot .133+1 \cdot .107+1 \cdot .006+1 \cdot .076+1 \cdot .001 \\
& =1.057
\end{aligned}
$$


```
4\cdot.02+4 . . 081
+3\cdot.103+3\cdot.122
+2\cdot.001+2\cdot.133+2\cdot.107+2\cdot.006+2\cdot.076 + 2 . .001
+1\cdot.073 + 1\cdot.104 + 1 . .001 + 1 . .042
=1.907
```

1 a 073	1 i. 104	. 001	you . 0	2^{1}
$2 /{ }_{001}$	$\left.2 /_{107}\right\rangle_{2}$			2
			$\text { ot } .103 .122$	
		$4 \text { / }$	$\begin{aligned} & . \\ & .081 \end{aligned}$	

$$
\begin{aligned}
& 5 \cdot .02+5 \cdot .081 \\
& +4 \cdot .103+4 \cdot .122 \\
& +3 \cdot .001+3 \cdot .133+3 \cdot .107+3 \cdot .006+3 \cdot .076+3 \cdot .001 \\
& +2 \cdot .073+2 \cdot .104+2 \cdot .001+2 \cdot .042 \\
& +1 \cdot .045+1 \cdot .055 \\
& =2.857
\end{aligned}
$$


```
6 . .02 + 6 . .081
+5\cdot.103+5 .. .122
+4\cdot.001+4\cdot.133+4\cdot.107+4\cdot.006 + 4\cdot.076 + 4 \cdot.001
+3\cdot.073+3\cdot.104+3\cdot.001 + 3 . .042
+2\cdot.045 + 2..055
+1..05
= 3.857
```



```
4\cdot.001+3\cdot.073+4\cdot.133+2\cdot.045+4\cdot.107+3\cdot.104+4\cdot.006
+1..05
+3\cdot.001+2\cdot.055+6 . .02+6 . .081+4 . .076 + 5 . .122+3 . .042+4 . .001
= 3.857
```


$$
\begin{aligned}
& 3 \cdot .001+2 \cdot .073+3 \cdot .133+1 \cdot .045+3 \cdot .107+2 \cdot .104+3 \cdot .006 \\
& +.001+.073+.133+.045+.107+.104+.006 \\
& +.05 \\
& +2 \cdot .001+1 \cdot .055+5 \cdot .02+5 \cdot .081+3 \cdot .076+4 \cdot .122+2 \cdot .042+3 \cdot .001 \\
& +.001+.055+.02+.081+.076+.122+.042+.001 \\
& =3.857
\end{aligned}
$$

in .05

$$
\begin{aligned}
& 3 \cdot .001+2 \cdot .073+3 \cdot .133+1 \cdot .045+3 \cdot .107+2 \cdot .104+3 \cdot .006 \\
& +2 \cdot .001+1 \cdot .055+5 \cdot .02+5 \cdot .081+3 \cdot .076+4 \cdot .122+2 \cdot .042+3 \cdot .001 \\
& +.001+.073+.133+.045+.107+.104+.006 \\
& +.05 \\
& +.001+.055+.02+.081+.076+.122+.042+.001 \\
& =3.857
\end{aligned}
$$

in .05

Total weighted depth for a given tree (expected lookup cost):

$$
\underbrace{\sum_{i=0}^{n-1} p_{i} \operatorname{depth}\left(k_{i}\right)}_{\text {keys }}+\underbrace{\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(m_{i}\right)}_{\text {misses }}
$$

Let depth $k_{k_{\mathrm{a}}}\left(k_{i}\right)$ be the depth of the node with k_{i} in the subtree rooted at node with k_{1}. For example, if k_{r} is the root of the entire tree and k_{a} is a child of the root, then

$$
\operatorname{depth}_{k_{r}}\left(k_{i}\right)=\operatorname{depth}_{k_{a}}\left(k_{i}\right)+1
$$

Then we can rewrite the total weighted depth as

$$
\underbrace{\sum_{i=0}^{r-1} p_{i} \operatorname{depth}_{k_{r}}\left(k_{i}\right)+\sum_{i=0}^{r} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {left subtree total weighted depth (absolute) }}+p_{r}+\underbrace{\sum_{i=r+1}^{n-1} p_{i} \operatorname{depth}_{k_{r}}\left(k_{i}\right)+\sum_{i=r+1}^{n} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {right subtree total weighted depth (absolute) }}
$$

Again, let k_{r} be the root of the entire tree and k_{a} and k_{b} be the root's children. Then

$$
\underbrace{\sum_{i=0}^{r-1} p_{i}\left(\operatorname{depth}_{k_{a}}\left(k_{i}\right)+1\right)+\sum_{i=0}^{r} q_{i}\left(\operatorname{depth}_{k_{a}}\left(m_{i}\right)+1\right)}_{\text {left subtree total weighted depth (absolute) }}+p_{r}+\underbrace{\sum_{i=r+1}^{n-1} p_{i}\left(\operatorname{depth}_{k_{b}}\left(k_{i}\right)+1\right)+\sum_{i=r+1}^{n} q_{i}\left(\operatorname{depth}_{k_{r}}\left(m_{i}\right)+1\right)}_{\text {right subtree total weighted depth (absolute) }}
$$

Convert to "relative depth":

$$
\underbrace{\sum_{i=0}^{n-1} p_{i}+\sum_{i=0}^{n} q_{i}}_{\text {total probability }}+\underbrace{\sum_{i=0}^{r-1} p_{i} \operatorname{depth}_{k_{a}}\left(k_{i}\right)+\sum_{i=0}^{r} q_{i} \operatorname{depth}_{k_{\mathrm{a}}}\left(m_{i}\right)}_{\text {left subtree total weighted depth (relative) }}+\underbrace{\sum_{i=r+1}^{n-1} p_{i} \operatorname{depth}_{k_{b}}\left(k_{i}\right)+\sum_{i=r+1}^{n} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {right subtree total weighted depth (relative) }}
$$

Let $T W D(k)$ be the total weighted depth of the tree rooted at k (relative to k) and $T P(k)$ be the total probability of the tree rooted at k. Then

$$
T W D\left(k_{r}\right)=T P\left(k_{r}\right)+T W D\left(k_{a}\right)+T W D\left(k_{b}\right)
$$

Let $P[i][j]$ be the total probabilities of the keys and misses in the range $[i, j]$:

$$
P[i][j]=\sum_{k=i}^{j} p_{k}+\sum_{k=i}^{j+1} q_{k}
$$

Let $C[i][j]$ be the least total weighted depth of any BST composed from keys in the range $[i, j]$. The recursive characterization is

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{ll}
q_{i}+C[i+1][j] \\
C[i][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[j][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$q_{i}+C[i+1][j]$

$C[i][r-1]+C[r+1][j]$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[i][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[j][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
P[i][j]= \begin{cases}q_{i}+p_{i}+q_{i+1} & \text { if } i=j \\
\left\{\begin{array}{ll}
q_{i}+p_{i}+P[i+1][j] \\
\text { or } & P[i][r-1]+p_{r}+P[r+1][j] \text { for } r \in(i, j) \\
\text { or } & P[i][j-1]+p_{j}+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

	0	1	2	3	4	5	6	7
k_{i}	a	do	i	in	like	not	then	you
p_{i}	.073	.045	.104	.05	.055	.103	.076	.042
q_{i}	.001	.113	.107	.006	.001	.02	.081	.122

\# For each candiate root r between i and j exclusive
for r in range $(i+1, j)$:
\# The cost of making key r the root
current_subtree_cost $=$ (total_weighted_depths[i][r-1]+
total_weighted_depths $[r+1][j])$
\# If its cost is better than best so far, it's the new best so far
if current_subtree_cost < least_subtree_cost : least_subtree_cost $=$ current_subtree_cost best_root $=r$
\# The cost of making key j the root
current_subtree_cost $=$ total_weighted_depths[i][j-1] + miss_probs[j+1]
\# If its cost is better than best-so-far, it's the new best-so-far
if current_subtree_cost < least_subtree_cost :
least_subtree_cost $=$ current_subtree_cost
best_root $=j$
\# Record the best option and corresponding cost in the tables total_weighted_depths[i][j] = total_probs[i][j] + least_subtree_cost decisions[i][j] = best_root

From its similarity to the algorithm for optimal matrix multiplication, we recognize the running time for building the tables as $\Theta\left(n^{3}\right)$. See Exercise 6.47 for details.

The value $C[0][n-1]$ in total_weighted_depths [0][$n-1]$ gives us the cost of the best tree for the given keys with their probabilities. As with other dynamic programming problems, a more useful result is the tree itself. Exercise 6.48 asks you to write a function that reconstructs the optimal binary search tree using a populated decision table, but for Project 6.2 we have an alternate strategy. Instead of reconstructing the tree after building the table, we build the actual optimal subtrees along with the table. Instead of a table of decisions as in the algorithm above, we maintain a table such that in position (i, j) we store the root of the best subtree for keys k_{i} through k_{i}.

Coming up:
Due Tues, Apr 2 (end of day)
Read Section 6.5
(No quiz on Section 6.5)
Due Mon, Apr 8 (end of day)
Read Sections 7.(1 \& 2)
Take quiz
Do Optimal BST project (Due Mon, Apr 8)

