
Chapter 6, Hash tables:

▶ General introduction; separate chaining (Today)

▶ (No class Monday—enjoy the eclipse)

▶ Open addressing (next week Wednesday)

▶ Hash functions (next week Friday)

▶ Perfect hashing (week-after Monday)

▶ Hash table performance (week-after Friday)

Today:

▶ The story of the Map ADT

▶ Goals and terminology of the unit

▶ Separate chaining implementation

▶ Variables and metrics of performance



Find Search the data structure for a given key

Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete



Find Insert Delete

Unsorted array Θ(n) Θ(1) [Θ(n)] Θ(n)

Sorted array Θ(lg n) Θ(n) Θ(n)

Linked list Θ(n) Θ(1) Θ(1)

Balanced BST Θ(lg n) Θ(1) [Θ(lg n)] Θ(1) [Θ(lg n)]

What we want Θ(1) Θ(1) Θ(1)



keykey

0

h1(k)

mod m

h(k)

0 m

number in [0,∞)

∞

h1(k)

number in [0,m)



Separate chaining: n
m < α where α > 1

key

Augustus

Tiberius

Caligula

Claudius

Nero

Galba

Otho Vitellius Vespasian

Titus

Domitian

Nerva

Trajan

Hadrian

Antoninus Pius

Marcus Aurleius Commodus

h(k)



Open addressing: n
m < α where α < 1

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I



Unit agenda:

▶ Solution 1: Separate chaining (plus basic concepts and terminology). (Today)

▶ Solution 2: Open addressing. (next week Wednesday)

▶ All about hash functions. (next week Friday)

▶ Solution 3: Perfect hashing. (week-after Monday)

▶ Looking carefully at performance. (week-after Wednesday)



Hash table terminology:

▶ Hash table: A data structure, not an ADT . . .

▶ Bucket: A position in the (main) array, or, abstractly, an index in the range [0,m).

▶ Hash function: A function from keys to buckets.

▶ Collision: When two keys are hashed to the same bucket.

▶ Chain: A sequence of keys that needs to be searched through to find a given key.

▶ Load factor (α): An upper bound on the ratio of keys to buckets.



Factors in best vs worst vs expected case:

▶ State of the table

▶ Length of the bucket

▶ Position of key in the bucket.

Parameters that can be adjusted for engineering a hash table:

▶ Load factor α

▶ Rehash strategy

▶ Hash function



O(1) c0
O(1) c0
O(1) c0
...

O(1) c0
rehash −→ O(n) c1 + c2n

O(1) c0
...

O(1) c0



T (n) = (n − 1)c0 + c1 + c2n
= (c0 + c2)n + c1 − c0
= Θ(n)



Hash functions should distribute the keys uniformly and independently.

Uniformity:

P(h(k) = i) =
1

m

Independence:

P(h(k1) = i) = P(h(k1) = i | h(k2) = j)



Coming up:

Do Optimal BST project (due Monday, April 8)

Due Mon, Apr 8 (end of day)
Read Sections 7.(1 & 2)
Take quiz (on Sections 7.(1 & 2), end of day)

Due Thurs Apr 11
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz


