Chapter 6, Hash tables:

- General introduction; separate chaining (week-before Friday)
- Open addressing (last week Wednesday)
- Hash functions (last week Friday)
- Perfect hashing (Monday)
- ► Hash table performance (**Today**)

Today:

- ► Finishing perfect hashing
- ▶ Elements of hashtable performance
- Separate chaining performance
- Open addressing performance

	Find	Insert	Delete
Unsorted array	$\Theta(n)$	$\Theta(1) [\Theta(n)]$	$\Theta(n)$
Sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$
Linked list	$\Theta(n)$	$\Theta(1)$	⊖(1)
Balanced BST	$\Theta(\lg n)$	$\Theta(1) [\Theta(\lg n)]$	$\Theta(1) [\Theta(\lg n)]$
What we want	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Find Search the data structure for a given key

Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete

$$\frac{(n+1)+n+(n-1)+\cdots+3+2+\overbrace{1+\cdots+1}^{m-n}}{m}$$

$$=\frac{m+n+(n-1)+\cdots+2+1}{m}$$
 the initial m accounting for the last probe in each case
$$=\frac{m}{m}+\frac{(n+1)\cdot\frac{n}{2}}{m}$$
 as an arithmetic series
$$\approx 1+\frac{(n+1)\cdot\frac{n}{2}}{2\cdot n}$$
 since m is about $2\cdot n$

$$=1+\frac{n+1}{4}$$
 by cancellation

$$\frac{[(s_0+1)+s_0+(s_0-1)+\cdots+2]+\cdots+1+\cdots 1}{m}=1+\frac{\sum_{i=0}^{\gamma-1}\sum_{j=1}^{s_i}j}{m}$$

What is the probability that a miss k requires at least i probes?

Conditional probability

 $P(X \mid Y)$: What is the probability of event X in light of event Y?

$$P(X \wedge Y) = P(X) \cdot P(X \mid Y)$$

$$Y_0 \wedge X_1 \wedge \dots \wedge X_{N-1} = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \wedge X_1) \dots P(X_{N-1} \mid X_0 \wedge \dots \wedge X_{N-2})$$

$$P(X_0 \wedge X_1 \wedge \cdots \wedge X_{N-1}) = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \wedge X_1) \cdots P(X_{N-1} \mid X_0 \wedge \cdots \wedge X_{N-2})$$

$$h(k) \uparrow \qquad \qquad \uparrow \qquad h(k) + i - 1$$

$$h(k) + 1 \qquad \qquad h(k) + i - 2$$

$$P(T[h(k)+1] \neq \mathtt{null} \mid T[h(k)] \neq \mathtt{null}) = \frac{n-1}{m-1}$$

The probability that a miss requires at least *i* probes:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2}$$

$$\leq \left(\frac{n}{m}\right)^{i-1} \quad \text{since } n < m$$

$$\leq \alpha^{i-1} \quad \text{by substitution}$$

$$\begin{split} \sum_{i=1}^{m} i \cdot P \begin{pmatrix} \text{it takes} \\ i \text{ probes} \end{pmatrix} &=& \sum_{i=1}^{m} i \cdot \left(P \begin{pmatrix} \text{it takes} \\ \text{at least } i \end{pmatrix} - P \begin{pmatrix} \text{it takes at} \\ \text{least } i+1 \\ \text{probes} \end{pmatrix} \right) \\ &=& \sum_{i=1}^{m} P \begin{pmatrix} \text{it takes} \\ \text{at least } i \\ \text{probes} \end{pmatrix} \\ &\leq& \sum_{i=1}^{m} \alpha^{i-1} \\ &\leq& \sum_{i=1}^{\infty} \alpha^{i-1} \\ &\leq& \sum_{i=1}^{\infty} \alpha^{i} \\ &=& \sum_{i=0}^{\infty} \alpha^{i} \\ &=& \frac{1}{1-\alpha} \end{split} \qquad \text{by a change of variable} \end{split}$$

by geometric series

Is the following assumption true for linear probing?

$$P(T[h(k)+1] \neq \text{null} \mid T[h(k)] \neq \text{null}) = \frac{n-1}{m-1}$$

In general, is the following assumption true for a probing strategy?

$$P(T[\sigma(k,1)] \neq \text{null} \mid T[\sigma(k,0)] \neq \text{null}) = \frac{n-1}{m-1}$$

What is the difference between

Each array index is equally likely to be vs the hash of a given key.

Each array position is equally likely to be occupied.

Linear probing is biased towards clustering:

harrer ren numer neumer er em er er er en men mennenerer er								
х	Number of buckets with exactly x previous buckets filled	Number of filled buckets with exactly x previous buckets filled	Probability that a bucket is filled if exactly <i>x</i> previous buckets are filled.					
0	97	48	.495					
1	48	22	.458					
2	22	12	.545					
3	12	7	.583					
4	7	4	.571					
5	4	3	.75					
6	3	2	.667					
7	2	2	1					
8	2	0	0					

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

$$\frac{1}{2} \cdot \left(1 + \frac{1}{(1-\alpha)^2}\right)$$

After n calls to put() with unique keys, no removals, consider average chain length over all keys (low is good), percent of keys that are in their ideal location (high is good), and length of the longest chain (low is good)

	n	Line	Linear probing		Qua	Quadratic probing			Double hashing		
Surnames	1000	2.092	64.7%	31	1.421	75.8%	9	2.327	65.2%	31	
Mountains	1360	1.568	73.8%	17	1.729	65.8%	11	1.770	73.4%	16	
Mountains (height)	1360	1.932	75.1%	99	1.882	68.9%	18	1.830	72.4%	13	
Chemicals	663	1.517	75.0%	16	1.729	65.5%	10	1.701	75.5%	9	
Chemicals (symbol)	663	1.885	71.0%	20	1.837	66.4%	13	1.798	72.7%	12	
Books	718	1.419	76.7%	8	1.659	70.0%	11	1.656	75.8%	8	
Books (ISBN)	718	1.542	74.4%	21	1.670	67.8%	15	1.724	74.5%	10	
Random strings	5000	1.544	77.6%	49	1.735	69.9%	37	1.598	78.1%	13	
Random strings	5000	1.531	77.1%	35	1.729	69.8%	28	1.593	77.9%	12	
Random strings	5000	1.643	77.5%	76	1.754	68.6%	29	1.590	78.1%	13	

Coming up:

Do Open Addressing Hashtable project (due this past Monday, Apr 15)
Do Perfect Hashing project (due Monday, Apr 22)

Due Today, Wed, Apr 17 (end of day) Re-read end of Section 7.3 Take quiz

Due Fri, Apr 19 (end of day) Read Section 8.1 Do Exercises 8.(4 & 5) Take the last quiz

Due Mon, Apr 22 (end of day) Read Section 8.2 (No quiz or practice problems)