
Chapter 5, Binary search trees:

▶ Binary search trees; the balanced BST problem (spring-break eve; finished
Monday)

▶ AVL trees (Monday and Wednesday)

▶ Traditional red-black trees (Today)

▶ Left-leaning red-black trees (next week Monday)

▶ “Wrap-up” BST (next week Wednesday)

Today:

▶ (Lab retrospective)

▶ Red-black trees in context

▶ Definition and examples

▶ Codebase details

▶ Cases for put-fixup

▶ Analysis

https://www.beyourownbirder.com

https://www.beyourownbirder.com


TRADITIONAL Red-Black Trees

Image swiped from http://www.cheeseandchickpeas.com/tomato-halloumi-salad/

http://www.cheeseandchickpeas.com/tomato-halloumi-salad/


5 8 15 2312 25 29 31 32 38 43 49 56 58 63

15 49

8 25 38 58

5 12 23 29 32 43 56 63



6

0

2

5

4

1

3

3

1

0 2 6

5

4



α β

γ α

γβ

A

B A

B

α β

γα

γβ

A

BA

B



(1)

[1]

(2)

(4)

[−1]

[0]

[0]

(1)

[0]

(1)

[0]

(1)

[0]

(1)

[1]

(2)

[1]

(3) (2)

[−1]

(3)

[1]

[1]

(5)



K

G

P U

Q S V

L O

0 0

11

1

2

1 1

1

1 1

1 1

2

0

1 1

2

2

3

R

C

B

A F

E

I

H J M

T



0

0

1

−1

0

1

1

0

1

0

2

0 0

0

2

0 0

0

3

1

0



A red-black tree is a binary tree (usually a BST) that is either empty or it is rooted at
node T such that

▶ T is either red or black.

▶ Both of T ’s children are roots of red-black trees.

▶ If T is red, then both its children are black.

▶ The red-black trees rooted at its children have equal blackheight; moreover, the
blackheight of the tree rooted at T is one more than the blackheight of its
children if T is black or equal to that of its chidren if T is red.



D

EC

D

C E

B

C E

D

B

C E

D

B



C

D

B

E

A

E

D

A C

B

E

D

B

CA



Left−Right Red Uncle

δ ε

D

C

A

B

α

γβ

C

A

B

α

γβ

δ ε

D

redden C

blacken A and D

Left−Left Red Uncle

δ ε

D

A

B

C

α β

γ
δ ε

D

A

B

C

α β

γ

redden C

blacken B and D

Left−Right Black Uncle Left−Left Black Uncle

B

A

B

γ

A

α β

C

δ

C

δ

A

B

α

γβ

C

δ

α β

γ

rotate left about A rotate right about C

redden C

blacken B

fall through



Left−Right Red Uncle

δ ε

D

C

A

B

α

γβ

C

A

B

α

γβ

δ ε

D

redden C

blacken A and D



Left−Left Red Uncle

δ ε

D

A

B

C

α β

γ
δ ε

D

A

B

C

α β

γ

redden C

blacken B and D



Left−Right Black Uncle Left−Left Black Uncle

B

A

B

γ

A

α β

C

δ

C

δ

A

B

α

γβ

C

δ

α β

γ

rotate left about A rotate right about C

redden C

blacken B

fall through



Invariant 26 (Postconditions of RealNode.put() with TradRBBalancer.) Let x
be the root of a subtree on which put() is called and let y be the node returned, that
is, the root of the resulting subtree.

(a) The subtree rooted at y has a consistent black height.

(b) The black height of subtree rooted at y is equal to the original black height of the
subtree rooted at x .

(c) The subtree rooted at y has no double-red violations except, possibly, both y and
one of its children is red.



Blackheight 1 2 3 4

Height 2 4 6 8
Nodes 2 6 14 30



AVL trees (Traditional) red-black trees

h ≤ 1.44 lg n h ≤ 2 lg(n + 2)− 2

The difference between the longest
routes to leaves in the two subtrees is
no greater than 1.

The longest route to any leaf is no
greater than twice the shortest route to
any leaf.

Stronger constraint, more aggressive re-
balancing, more balanced tree, more
work spent rebalancing.

Looser constraint, less aggressive rebal-
ancing, less balanced tree, less work
spent rebalancing.



Coming up:

Do BST rotations project (due this past Wed, Mar 13)
Do AVL project (due Mon, Mar 18)
Do Traditional RB project (due Mon, Mar 22)

Due Tues, Mar 19 (end of day)—but spread it out
Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts
optional—see Canvas]
Do Exercise 5.13
Take quiz


