Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (spring-break eve)
- AVL trees (last week Monday and Wednesday)
- Traditional red-black trees (last week Friday, finished Monday)
- ► Left-leaning red-black trees (Monday, finish today)
- "Wrap-up" BSTs, B-trees (Today)
- Begin dynamic programming (Friday)
- Test 2 Wednesday, Apr 5

Today:

- ► Look ahead to Test 2
- Balanced tree comparisons
- Survey of B-trees

$$h \leq 1.44 \lg n$$

The difference between the longest routes to leaves in the two subtrees is no greater than 1.

Stronger constraint, more aggressive rebalancing, more balanced tree, more work spent rebalancing.

$$h \le 2\lg(n+2) - 2$$

The longest route to any leaf is no greater than twice the shortest route to any leaf.

Looser constraint, less aggressive rebalancing, less balanced tree, less work spent rebalancing.

		Aft	er puts	After removals								
	Height	Leaf %	Total depth	Height	Leaf %	Total depth						
Unbalanced	32	33.3%	134507	28	16.8%	61207						
	31	33.2%	127865	26	17.0%	58171						
	30	33.1%	129037	26	16.9%	58610						
	28	33.5%	124463	26	17.3%	56086						
	32	33.4%	136730	28	16.9%	62092						
AVL	16	43.2%	100327	14	21.5%	46088						
	15	42.9%	100395	14	21.1%	46028						
	15	42.8%	100341	14	21.1%	46028						
	15	42.8%	100282	14	21.3%	45973						
	15	43.0%	100582	14	21.2%	46097						
Traditional RB	16	42.8%	101948	16	21.5%	46729						
	16	42.9%	101226	15	21.4%	46344						
	16	43.1%	101525	15	21.5%	46462						
	16	42.7%	101680	16	21.5%	46572						
	16	42.9%	101292	15	21.4%	46338						
Left-leaning RB	18	42.8%	102288	18	21.6%	46950						
	19	42.9%	102860	16	21.3%	46774						
	18	43.1%	101949	17	21.5%	46691						
	18	42.7%	102011	17	21.6%	46938						
	19	42.9%	102552	16	21.4%	46764						

															31	60	88	113	141	170	195	259	228	281	313	347	372	400	436	
										_						7		_		1	N.	1.	11.		·					
																				_	_		_							
2	5	7	8	11	13	14	17	20	21	23	26	27	29	30		33	35	37	38	41	42	44	47	50	51	53	54	57	58	59

Formally, a B-tree with maximum degree M over some ordered key type is either

- empty, or
- ightharpoonup a node with with d-1 keys and d children, designated as lists keys and children such that
 - $ightharpoonup \lceil M/2 \rceil \le d \le M$,
 - children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
 - ▶ for all $i \in [1, d-1)$, children[i] is a B-tree such that all of the keys in that tree are greater than keys[i-1] and less than keys[i],
 - ▶ and children[d-1] is a B-tree such that all of the keys in that tree are greater than keys[d-2].

$$\underbrace{(M-1)}_{\text{keys per}} \sum_{i=0}^{h-1} M^i = (M-1) \frac{M^h-1}{M-1} = M^h-1$$
node sum of nodes at each level
$$n = M^h-1$$

$$M^h = n+1$$

 $h = \log_M(n+1)$

$$n = M^{h} - 1$$

$$M^{h} = n + 1$$

$$h = \log_{M}(n+1)$$

$$h = \log_{\frac{M}{2}}(n+1) = \frac{\log_{M}(n+1)}{1 - \log_{M} 2}$$

Cost of a search:

$$\lg M \cdot h = \lg M \cdot \frac{\log_M(n+1)}{1 - \log_M 2}$$

$$= \lg M \frac{\frac{\lg(n+1)}{\lg M}}{1 - \frac{\lg 2}{\lg M}}$$

$$= \frac{\lg(n+1)}{1 - \frac{1}{\lg M}}$$

$$= \frac{\lg M}{\lg M - 1} \lg(n+1)$$

Compare: $1.44 \lg n$ for AVL trees, $2 \lg n$ for RB trees.

Let c_0 be the cost of searching at a node (proportional to $\lg M$) and c_1 be the cost of reading a node from memory. The the cost of an entire search is

$$(c_0 + c_1) \frac{\log_M(n+1)}{1 - \log_M 2}$$

Now, consolidate the constants by letting $d = \frac{c_0 + c_1}{1 - \log_M 2}$, and we have

$$d\log_M(n+1)$$

Coming up:

Do Traditional RB project (due Fri, Mar 22) (Recommended: Do Left-leaning RB project for your own practice)

Due Wed, Mar 20 (today (end of day) (but hopefully you've spread it out) Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts optional—see Canvas]
Do Exercise 5.13
Take quiz

Due **Mon, Mar 25** (class time) Read Section 6.(1&2) Do Exercises 6.(5–7) Take quiz

Due **Tues, Mar 26** (end of day) Read Section 6.3 Do Exercises 6.(16, 19, 23, 33) Take quiz