Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (spring-break eve)
- AVL trees (last week Monday and Wednesday)
- Traditional red-black trees (last week Friday, finished Monday)
- Left-leaning red-black trees (Monday, finish today)
- "Wrap-up" BSTs, B-trees (Today)
- Begin dynamic programming (Friday)
- Test 2 Wednesday, Apr 5

Today:

- Look ahead to Test 2
- Balanced tree comparisons
- Survey of B-trees

AVL trees

(Traditional) red-black trees
$h \leq 1.44 \lg n$
$h \leq 2 \lg (n+2)-2$
The difference between the longest The longest route to any leaf is no routes to leaves in the two subtrees is greater than twice the shortest route to no greater than 1. any leaf.

Stronger constraint, more aggressive rebalancing, more balanced tree, more work spent rebalancing. Looser constraint, less aggressive rebalancing, less balanced tree, less work spent rebalancing.

	After puts				After removals		
Unbalanced	Height	Leaf $\%$	Total depth	Height	Leaf \%	Total depth	
	32	33.3%	134507	28	16.8%	61207	
	31	33.2%	127865	26	17.0%	58171	
	30	33.1%	129037	26	16.9%	58610	
	28	33.5%	124463	26	17.3%	56086	
AVL	32	33.4%	136730	28	16.9%	62092	
	16	43.2%	100327	14	21.5%	46088	
	15	42.9%	100395	14	21.1%	46028	
	15	42.8%	100341	14	21.1%	46028	
	15	42.8%	100282	14	21.3%	45973	
Traditional RB	15	43.0%	100582	14	21.2%	46097	
	16	42.8%	101948	16	21.5%	46729	
	16	42.9%	101226	15	21.4%	46344	
	16	43.1%	101525	15	21.5%	46462	
	16	42.7%	101680	16	21.5%	46572	
	16	42.9%	101292	15	21.4%	46338	
Left-leaning RB							
	18	42.8%	102288	18	21.6%	46950	
	19	42.9%	102860	16	21.3%	46774	
	18	43.1%	101949	17	21.5%	46691	
	18	42.7%	102011	17	21.6%	46938	
	19	42.9%	102552	16	21.4%	46764	

Formally, a B-tree with maximum degree M over some ordered key type is either

- empty, or
- a node with with $d-1$ keys and d children, designated as lists keys and children such that
- $\lceil M / 2\rceil \leq d \leq M$,
- children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
- for all $i \in[1, d-1)$, children $[i]$ is a B-tree such that all of the keys in that tree are greater than keys $[i-1]$ and less than keys $[i]$,
- and children $[d-1]$ is a B-tree such that all of the keys in that tree are greater than keys[d -2$]$.

$$
\begin{aligned}
\underbrace{\text { node }}_{\text {keys per }} \begin{aligned}
&(M-1) \\
& \underbrace{\sum_{i=0}^{h-1} M^{i}}_{\begin{array}{c}
\text { sum of } \\
\text { nodes } \\
\text { at each } \\
\text { level }
\end{array}} \\
&=(M-1) \frac{M^{h}-1}{M-1}=M^{h}-1 \\
& n=M^{h}-1 \\
& M^{h}=n+1 \\
& h=\log _{M}(n+1)
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
n=M^{h}-1 \\
M^{h}=n+1 \\
h=\log _{M}(n+1) \\
h=\log _{\frac{M}{2}}(n+1)=\frac{\log _{M}(n+1)}{1-\log _{M} 2}
\end{gathered}
$$

Cost of a search:

$$
\begin{aligned}
\lg M \cdot h & =\lg M \cdot \frac{\log _{M}(n+1)}{1-\log _{M} 2} \\
& =\lg M \frac{\frac{\lg (n+1)}{\lg M}}{1-\frac{\lg 2}{\lg M}} \\
& =\frac{\lg (n+1)}{1-\frac{1}{\lg M}} \\
& =\frac{\lg M}{\lg M-1} \lg (n+1)
\end{aligned}
$$

Compare: $1.44 \lg n$ for AVL trees, $2 \lg n$ for RB trees.

Let c_{0} be the cost of searching at a node (proportional to $\lg M$) and c_{1} be the cost of reading a node from memory. The the cost of an entire search is

$$
\left(c_{0}+c_{1}\right) \frac{\log _{M}(n+1)}{1-\log _{M} 2}
$$

Now, consolidate the constants by letting $d=\frac{c_{0}+c_{1}}{1-\log _{M} 2}$, and we have

$$
d \log _{M}(n+1)
$$

Coming up:

Do Traditional RB project (due Fri, Mar 22)
(Recommended: Do Left-leaning RB project for your own practice)
Due Wed, Mar 20 (today (end of day) (but hopefully you've spread it out) Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts optional-see Canvas]
Do Exercise 5.13
Take quiz
Due Mon, Mar 25 (class time)
Read Section 6.(1\&2)
Do Exercises 6.(5-7)
Take quiz
Due Tues, Mar 26 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz

