Chapter 8, Strings:

- General introduction; string sorting (last week Friday)
- Tries (Monday)
- Regular expression (Today)

Today:

- What regular expressions are
- How to use regular expressions practically
- Why regular expressions are important theoretically

Projects:

- Last regular project score update on Tues, Apr 23 (yesterday)
- "Two minute warning" run of scripts on Fri, Apr 26 (no Canvas update-see report file /cslab/class/cs345/(your userid)/(your userid).report)
- All projects due on the last day of classes, midnight between Fri, Apr 26 and Sat, Apr 27-not last day of finals.

Final exam

- Our final exam block is Tues, Apr 30, 10:30am-12:30pm The first time ever that I have given a final exam in April.
- During our final exam block, we will meet in the CSCI lab
- Test 3 ("written" /conceptual part) will be like Test 1, but covering BSTs (ch 5) through strings (ch 8)
- Test 4 (programming part) will work the same way as Test 2, covering dynamic programming, hashing, and strings.

- An alphabet is a set of symbols, Σ.
- A string over an alphabet is a sequence of symbols from that alphabet. $\Sigma *$ is the set of all strings over alphabet Σ.
- A language over an alphabet is a set of strings, that is, a subset of Σ *.
- Regular expressions constitute a system for specifying languages; a regular expression denotes a language.
base
$\begin{cases}\emptyset & \text { the empty set of strings } \\ \varepsilon & \text { the set containing the empty string, }\{" "\} \\ a & \text { the set containing only the string with only } a, \\ & \text { for some } a \in \Sigma,\{" a "\}\end{cases}$
recursive
cases $\begin{cases}r s \quad \begin{array}{l}\text { the set of strings made from concatening strings from } r \text { and } s, \\ \{x+y \mid x \in r \wedge y \in s\},\end{array} \\ r \mid s \text { for some regular expressions } r \text { and } s \\ \text { the set of strings from } r \text { or } s, r \cup s \\ \text { for some regular expressions } r \text { and } s \\ \text { the set of strings made from concatenating } 0 \text { or more strings from } r \\ \text { for some regular expression } r\end{cases}$

Abbreviation	Meaning	Equivalence
[abc]	One occurrence of any of these symbols	$(\mathrm{a}\|\mathrm{b}\| \mathrm{c})$
$[\mathrm{a}-\mathrm{c}]$	One occurrence of any symbol in this range	$(\mathrm{a}\|\mathrm{b}\| \mathrm{c})$
$r ?$	Optionally an occurrence of a string defined by r	$(r \mid \varepsilon)$
r^{5}	5 occurrences of a string defined by r	$r r r r r$
$r^{3,5}$	Between 3 and 5 occurrences of a string defined by r	$(r r r\|r r r r\| r r r r)$
$r+$	One or more occurrences of a string defined by r	$r r *$

- DNA sequences: $(\mathrm{A}|\mathrm{C}| \mathrm{G} \mid \mathrm{T})$.
- Identifiers: ('?[A-Za-z] [A-Za-z0-9_])|_.
- Phone numbers: $[2-9][0-9]^{2}-[2-9][0-9]^{2}-[0-9]^{4}$.
- Dates: $((1[0-2]) \mid[1-9]) /(30|31|([12][0-9]) \mid[1-9]) /[1-9][0-9]^{0,3}$.
- US Postal Addresses: [0-9] + [NSEW] ${ }^{0,2}$ [A-Z] [a-z]* (St \mid Ave $|\mathrm{Rd}| \mathrm{Ln}|\mathrm{Dr}|$ $B l v d),([A-Z][a-z] *) *,[A-Z]^{2}[0-9]^{5}$.

