Chapter 3 roadmap:

- Propositions, booleans, logical equivalence. §3.(1 & 2) (Monday)
- ► Conditional propositions and arguments. §3.(3 & 4) (today)
- Predicates and quantification. §3.(6 & 7) (Friday)
- Quantified arguments §3.8 (next week Wednesday)
- ► (Begin proofs next week Friday)

Today:

- ► Define conditional propositions
- Define arguments
- Consider known argument forms
- Practice verifying argument forms (Game 2)

p	q	$p \wedge q$	$p \lor q$	$\sim p$	$\sim p \lor q == p \to q$
T	T	T	T	F	T
T	F	F	T	F	F
F	T	F	T	T	T F T
F	F	F	F	T	T

		(original) conditional	convorco	invorco	contrapositive	nogation	hicanditional
		Conditional	converse	inverse	contrapositive	negation	Diconditional
p	q	p o q	q o p	$\sim p ightarrow \sim q$	$\sim q o \sim p$	$p \wedge \sim q$	$p \leftrightarrow q$
T	T	T	T	T	T	F	T
Τ	F	F	T	T	F	T	F
F	Τ	T	F	F	T	F	F
F	F	T	T	T	T	F	T

Valid argument

If it is Monday, then it is raining It is Monday.
Therefore it is raining.

$$p \rightarrow q$$
 p
 $\therefore q$

Invalid argument

If it is raining, then there are clouds There are clouds. Therefore it is raining.

 $p \rightarrow q$ q $\therefore p$

al row
al row

Modus tollens

If it is spring, then the daffodils bloom. The daffodils aren't blooming. Therefore it is not spring.

p	q	$p \rightarrow q$	$\sim q$	$\sim p$
T	T	T	F	
Τ	F	F	T	
F	T	T	F	
F	F	T	T	T

Modus Ponens

$$p \rightarrow q$$

.. q

Modus Tollens

$$p \rightarrow q$$

$$\sim$$
 q

∴ $\sim p$

Generalization

.. p ∨ q

Specialization

 $p \wedge q$

∴. p

Elimination

$$p \lor q$$

 $\sim p$

.. q

Transitivity

 $p \rightarrow q$

 $q \rightarrow r$

 $\therefore p \rightarrow r$

Division into cases

 $p \lor q$

 $p \rightarrow r$

 $q \rightarrow r$

.. r

Contradiction

 $p \rightarrow F$

∴ $\sim p$

Arguments in literature

Elmination:

If anyone knows anything about anything, it's Owl who knows something about something, or my name isn't Winnie-the-Pooh. Which it is. So there you have it.

A. A. Milne, Winnie-the-Pooh, Ch 4.

Division into cases:

Soon her eye fell on a little glass box that was lying under the table: she opened it, and found in it a very small cake, on which the words "EAT ME" were beautifully marked in currants. "Well, I'll eat it," said Alice, "and if it makes me grow larger, I can reach the key; and if it makes me grow smaller, I can creep under the door; so either way I'll get into the garden, and I don't care which happens!"

Lewis Carroll, Alice's Adventures in Wonderland, Ch 1.

Proof by contradiction

$$p o F$$
:. $\sim p$

$$\begin{array}{c|c|c|c} p & p \to F & \sim p \\ \hline T & F & F \\ \hline F & T & T & \stackrel{critical\ row}{\longleftarrow} \end{array}$$

- 3.5.7
- (a) $t \rightarrow u$
- (b) $p\lor\sim q$
- (c) $p \rightarrow (u \rightarrow r)$
- (d) q
- (e) $:: t \to r$

- 3.5.8
- (a) $p \rightarrow t$
- (b) $\sim (q \rightarrow t) \rightarrow w$
- (c) $p \vee q$
- (d) $\sim w$
- (e) ∴ t

- 3.5.14
- (a) w
- (b) $q \rightarrow r$
- (c) $t \rightarrow s$
- (d) $u \rightarrow s$
- (e) $(\sim t \land \sim u) \rightarrow \sim w$
- (f) $(s \lor y) \to (p \to q)$
- (g) $\sim (p \rightarrow r) \vee x$
- (h) ∴ *x*

∴~ p

.:. r

Contradiction $p \rightarrow F$ ∴~ p

3.5.15

- (a) $p \rightarrow q$
- (b) x
- (c) $\sim (p \vee w) \rightarrow r$
- (d) $q \rightarrow u$
- (e) $x \rightarrow t$
- (f) $w \rightarrow u$
- (g) $r \vee s$
- (h) $r \rightarrow F$
- (i) $: t \land s \land u$

- 3.5.16
- (a) $u \rightarrow \sim p$
- (b) $(\sim p \lor q) \to (r \to s)$
- (c) $u \wedge \sim w$
- (d) $t \rightarrow s$
- (e) $(\sim t \land \sim r) \rightarrow w$
- (f) ∴ s

For next time:

Do Exercises 3.5.(7-10) and 3.5.(3, 9-13)

Read Section 3.(6 & 7).

Take quiz