Chapter 3:

- ▶ Propositions, booleans, logical equivalence. §3.(1 & 2) (**Today**)
- ► Conditional propositions and arguments. §3.(3 & 4) (Wednesday)
- ▶ Predicates and quantification. §3.(6 & 7) (Friday)
- Quantified arguments §3.8 (next week Wednesday)
- ► (Begin proofs next week Friday)

Today:

- ▶ Highlight main points of §3.1: Propositions, forms, etc
- ► Take a programming break
- ▶ Work through §3.2: Logical equivalences (Game 1)

A **proposition** is a sentence that is true or false, but not both.

It is snowing and it is not Thursday.

A **propositional form** is like a proposition but with content replaced by variables.

p and not q

$$p \land \sim q$$

$$\mathbb{Z} = \{\ldots -3, -2, -1, 0, 1, 2, 3 \ldots\}$$

$$+ - \times \div$$

$$\mathbb{B} = \{T, F\}$$

$$\vee \wedge \sim$$

	0		2	3	
0	0	0	0	0	
1 2 3	0 0 0 0	1	2	3	
2	0	2	4	6	
3	0	3	6	9	

		p	q	$p \wedge q$	p	q	$p \lor q$
р	\sim p			T			T
T	F			F			T
F	F T	F	Τ	F			T
	1	F	F	F	F	F	F

p	q	$p \wedge q$	$p \lor q$	$\sim p$
T	T	_	T	F
T	F	F	\mathcal{T}	F
F	T	F	T	\mathcal{T}
F	F	F	F	T

Evaluate (to T or F) this logical expression:

$$(T \land (\sim F \lor F)) \land (T \land T)$$

Evaluate (to T or F) this logical expression:

$$(T \vee F) \wedge \sim (F \wedge T)$$

Evaluate (to T or F) this logical expression:

$$(F \lor F \lor T) \land (\sim T \land F)$$

p	q	$\sim p$	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$	\sim p $\lor\sim$ q
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	F T T	T

Commutative laws: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

Associative laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive laws: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

Absorption laws: $p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$

Idempotent laws: $p \wedge p \equiv p$ $p \vee p \equiv p$

Double negative law: $\sim \sim p \equiv p$

DeMorgan's laws: $\sim (p \wedge q) \equiv \sim p \vee \sim q \qquad \sim (p \vee q) \equiv \sim p \wedge \sim q$

Negation laws: $p \lor \sim p \equiv T$ $p \land \sim p \equiv F$

Universal bound laws: $p \lor T \equiv T$ $p \land F \equiv F$

Identity laws: $p \wedge T \equiv p$ $p \vee F \equiv p$

Tautology and $\sim T \equiv F \qquad \sim F \equiv T$

contradiction laws:

Remember from high school algebra that there are "simplify" problems and "solve" problems.

■ Simplify
$$3x(2+3x)^2 + 1$$
.

$$3x(2+3x)^{2} + 1$$
= $3x(4+12x+9x^{2}) + 1$
= $12x + 36x^{2} + 27x^{3} + 1$
= $27x^{3} + 36x^{2} + 12x + 1$

■ Solve
$$12x = 57 - 7x$$
 for x .

$$12x = 57 - 7x
19x = 57
x = 3$$

Suppose we were to show that $\sim (\sim p \land q) \lor (p \lor \sim p) \equiv p \lor \sim q$.

Do this:

$$\begin{array}{ll} \sim (\sim p \wedge q) \vee (p \wedge \sim p) \\ \equiv \sim (\sim p \wedge q) \vee F & \text{by negation law} \\ \equiv \sim (\sim p \wedge q) & \text{by identity law} \\ \equiv p \vee \sim q & \text{by De Morgan's} \end{array}$$

Don't do this:

$$\sim (\sim p \land q) \lor (p \land \sim p) \equiv p \lor \sim q$$

$$\sim (\sim p \land q) \lor F \equiv p \lor \sim q \text{ by negation law}$$

$$\sim (\sim p \land q) \equiv p \lor \sim q \text{ by identity law}$$

$$p \lor \sim q \equiv p \lor \sim q \text{ by De Morgan's}$$

For next time:

Do Exercises 3.2.(2, 4, 8-12)

Read 3.(1 & 2) if you haven't already (3.3 hasn't been written yet...)
Read 3.(4 & 5)
Take quiz