
Chapter 7 outline:

▶ Introduction, function equality, and dictionaries (last week Wednesday)

▶ Image and inverse images (last week Friday)

▶ Function properties and composition (Today)

▶ Map, reduce, filter (Wednesday)

▶ Cardinality (Friday)

▶ Countability (week-after Monday, Apr 7)

▶ Review (week-after Wednesday, Apr 9)

▶ Test 3, on Ch 5 & 6 (week-after Friay, Apr 11)

Today:

▶ Definition of one-to-one and onto, plus proofs

▶ Inverse functions

▶ Definition of function composition, plus proofs



Not a function. Not a function.
(There’s a domain element that is (There’s a domain element that is

related to two things.) not related to anything.)



.

Onto (Surjection)

Everything in the codomain
is hit.

.
f : X → Y is onto if ∀ y ∈ Y ,

∃ x ∈ X | f (x) = y .

Analytic use:
f is onto.
y ∈ Y .
Hence ∃ x ∈ X such that f (x) = y .

Synthetic use:
Suppose y ∈ Y .
...
(Somehow find x such that f (x) = y.)
Therefore f is onto.



.

One-to-one (Injection)

Domain elements don’t share.

.
f is one-to-one if ∀ x1, x2 ∈ X ,

if f (x1) = f (x2) then x1 = x2.

Analytic use:
f is one-to-one.
f (x1) = f (x2).
Hence x1 = x2.

Synthetic use:
Suppose x1, x2 ∈ X and f (x1) = f (x2).
...
(Somehow show x1 = x2.)
Therefore f is one-to-one.



Onto One-to-one Both onto and one-to-one
(not one-to-one) (not onto)

|X | ≥ |Y | |X | ≤ |Y | |X | = |Y |



Let f : R → R such that f (x) = x
2 . Is f one-to-one? Is it onto?

f is one-to-one.
Proof. Suppose x1, x2 ∈ R such that f (x1) =
f (x2). [Want x1 = x2] Then, by how f is defined,

x1
2 = x2

2
x1 = x2

Therefore f is one-to-one by definition. □

f is onto.
Proof. Suppose y ∈ R. [Want x such that
f (x) = y.]
Let x = 2y . Then

f (x) = 2y
2

= y

Therefore f is onto by definition □
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Let f : R → R such that f (x) = x2. Is f one-to-one? Is it onto?

f is not one-to-one.
f (2) = 22 = 4
f (−2) = (−2)2 = 4

f is no onto.
Let y = −1.
̸ ∃ x ∈ R such that f (x) = −1.
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Ex 6.3.4. If A ⊆ X and f is one-to-one, then f −1[f [A]] ⊆ A.

(Ex 6.2.9 was, Prove A ⊆ f −1[f [A]], and Ex 6.2.10 was, Find a counterexample for
A = f −1[f [A]].)



Ex 6..3.4. If A ⊆ X and f is one-to-one, then f −1[f [A]] ⊆ A.
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X

f

Y

f −1[f [A]]

A

f [A]



Ex 6.3.5. If A ⊆ Y and f is onto, then A ⊆ f [f −1[A]].

X

f

Y

A

f [f −1[A]]

f −1[A]



Inverse relation: R−1 = {(y , x) ∈ Y × X | (x , y) ∈ R}
Since a function is a relation, a function has an inverse, but we don’t know
that the inverse of a function is a function.

If f : X → Y is a one-to-one correspondence, then

f −1 : Y → X = {(y , x) ∈ Y × X | f (x) = y}

is the inverse function of f .

Theorem 6.8 If f : X → Y is a one-to-one correspondence, then f −1 : Y → X is well
defined.

Proof. Suppose y ∈ Y . Since f is onto, there exists x ∈ X such that
f (x) = y . Hence (y , x) ∈ f −1 or f −1(y) = x .

Further suppose (y , x1), (y , x2) ∈ f −1 (That is, suppose that both f −1(y) = x1
and f −1(y) = x2.) Then f (x1) = y and f (x2) = y . Since f is one-to-one,
x1 = x2.

Therefore, by definition of function, f −1 is well defined. □



Relation composition: If R is a relation from X to Y and S is a relation from Y to Z ,
then S ◦ R is the relation from X to Z defined as

S ◦ R = {(x , z) ∈ X × Z | ∃ y ∈ Y such that (x , y) ∈ R and (y , z) ∈ S}

Function composition: If f : X → Y and g : Y → Z , then g ◦ f : X → Z is defined as

g ◦ f = {(x , z) ∈ X × Z | z = g(f (x))}

Theorem 6.9 If f : X → Y and g : Y → Z are functions, then g ◦ f : X → Z is well
defined.

Proof. Suppose x ∈ X . Since f is a function, there exists a y ∈ Y such that
f (x) = y . Since g is a function, there exists a z ∈ Z such that g(y) = z . By
definition of composition, (x , z) ∈ g ◦ f , or g ◦ f (x) = z .
Next suppose (x , z1), (x , z2) ∈ g ◦ f , or g ◦ f (x) = z1 and g ◦ f (x) = z2. By
definition of composition, there exist y1, y2 such that f (x) = y1, f (x) = y2,
g(y1) = z1, and g(y2) = z2. Since f is a function, y1 = y2. Since g is a
function, z1 = z2.
Therefore, by definition of function, g ◦ f is well defined. □



Function composition: If f : X → Y and g : Y → Z , then g ◦ f : X → Z is defined as

g ◦ f = {(x , z) ∈ X × Z | x = g(f (x))}

f (x)

g(x)

g ◦ f (x)

Let f (x) = 3x

Let g(x) = x + 7

Then

g ◦ f (x) = f (x) + 7
= 3x + 7



Ex 6.4.4. If f : X → Y and g : Y → Z are both onto, then g ◦ f is onto.

Proof. Suppose f : X → Y and g : Y → Z are both onto.

[Now, we want to prove “ontoness.” Of which function? g ◦ f . How do we prove
ontoness? We pick something from the codomain of the function we’re proving to be
onto and show that it is hit. What is the codomain of g ◦ f ? Z .]

Further suppose z ∈ Z . [We need to come up with something in the domain of g ◦ f
that hits z. The domain is X . We will use the fact that f and g are both onto.]

X

f

Z

g

Y

By definition of onto, there exists y ∈ Y such that
g(y) = z . Similarly there exists x ∈ X such that
f (x) = y . Now,

g ◦ f (x) = g(f (x)) by definition of function composition
= g(y) by substitution
= z by substitution

Therefore g ◦ f is onto by definition. □
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Ex 6.4.8. If f : X → Y , g : X → Y and h : Y → Z , h is one-to-one, and
h ◦ f = h ◦ g , then f = g .

X

f

Z

Y

g

h



For next time:
Do Exercises 6.3.(2,3,6) and 6.4.(1,5,6)

No reading or quiz


