## Chapter 6 outline:

- Introduction, function equality, and anonymous functions (Wednesday)
- Image and inverse images (Today)
- Function properties and composition (next week Monday)
- Map, reduce, filter (next week Wednesday)
- Cardinality (next week Friday)
- Countability (week-after Monday, Apr 7)
- ► Review (week-after Wednesday, Apr 9)
- ► Test 3, on Ch 5 & 6 (week-after Friay, Apr 11)

## Today:

- Review definitions from last time
- New definitions: image and inverse image
- Programming
- Proofs

A relation f from X to Y is a function (written  $f: X \to Y$ ) if  $\forall x \in X$ , (1)  $\exists y \in Y \mid (x, y) \in f$ , and (2)  $\forall y_1, y_2 \in Y$ ,  $(x, y_1)$ ,  $(x, y_2) \in f \to y_1 = y_2$ .





Not a function.

(There's a domain element that is related to two things.)

Not a function.

(There's a domain element that is not related to anything.)

A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

$$f[A] = \{ y \in Y \mid \exists \ x \in A \text{ such that } f(x) = y \}$$

$$[A] = \{ y \in Y \mid \exists \ x \in A \text{ such that } f(x) = y \}$$



$$f^{-1}[B] = \{x \in X \mid f(x) \in B\}$$



**Lemma 6.2.** If  $f: X \to Y$ , then  $f[\emptyset] = \emptyset$ .

**Lemma 6.3.** If  $f: X \to Y$ ,  $A \subseteq X$ , and  $A \neq \emptyset$ , then  $f[A] \neq \emptyset$ .

**Lemma 6.4.** If  $f: X \to Y$ , then  $f^{-1}[\emptyset] = \emptyset$ .

We might expect the following, but *it's not true*:

**Lemma XXXX.** If  $f: X \to Y$ ,  $A \subseteq Y$ , and  $A \neq \emptyset$ , then  $f^{-1}[A] \neq \emptyset$ .

**Ex 6.2.1.** If  $A, B \subseteq X$ , then  $f[A \cap B] \subseteq f[A] \cap f[B]$ .



Consider this picture of X and Y:



**Attempted proof.** Suppose  $A, B \subseteq X$  and  $y \in f[A - B]$ . By definition of image, there exists  $x \in A - B$  such that f(x) = y.

**Attempted proof.** Suppose  $A, B \subseteq X$  and  $y \in f[A - B]$ . By definition of image, there exists  $x \in A - B$  such that f(x) = y.

By definition of difference,  $x \in A$ , and  $x \notin B$ . By definition of image,  $f(x) \in f[A]$ .

**Attempted proof.** Suppose  $A, B \subseteq X$  and  $y \in f[A - B]$ . By definition of image, there exists  $x \in A - B$  such that f(x) = y.

By definition of difference,  $x \in A$ , and  $x \notin B$ . By definition of image,  $f(x) \in f[A]$ .

So, also by definition of image,  $f(x) \notin f[B]$ . Right?

**Attempted proof.** Suppose  $A, B \subseteq X$  and  $y \in f[A - B]$ . By definition of image, there exists  $x \in A - B$  such that f(x) = y.

By definition of difference,  $x \in A$ , and  $x \notin B$ . By definition of image,  $f(x) \in f[A]$ .

So, also by definition of image,  $f(x) \notin f[B]$ . Right?

NO!



**Ex 6.2.3.** If  $A, B \subseteq X$ , then  $f[A - B] \subseteq f[A] - f[B]$ ?



Let 
$$X = \{x_1, x_2\}$$
,  $Y = \{y\}$ ,  $A = \{x_1\}$ , and  $B = \{x_2\}$ .

Let 
$$f = \{(x_1, y), (x_2, y)\}.$$

Then 
$$f[A-B] = f[\{x_1\} - \{x_2\}] = f[\{x_1\}] = \{y\}.$$

Moreover, 
$$f[A] - f[B] = \{y\} - \{y\} = \emptyset$$
.

So 
$$f[A - B] \not\subseteq f[A] - f[B]$$

**Ex 6.2.4.** If  $A \subseteq B \subseteq X$ , then  $f[B] = f[B - A] \cup f[A]$ .



**Ex 6.2.6.** If  $A \subseteq B \subseteq Y$ , then  $f^{-1}[A] \subseteq f^{-1}[B]$ .



**Ex 6.2.7.** If  $A, B \subseteq Y$ , then  $f^{-1}[A \cup B] = f^{-1}[A] \cup f^{-1}[B]$ .



## For next time:

Do Exercises 6.2.(2, 5, 8, 9, 10).

No programming problems this time; there is an all-programming assignment coming up.

See Canvas for hint on 6.2.5

Read Section 6.(3 & 4)

Take quiz