Chapter 6 in context:

- Chapter 5 Relations: Builds on proofs about sets
- Chapter 6 Function: Builds on proofs about relations
- Chapter 7 Self Reference: Focuses on recursive thinking

Chapter 6 outline:

- Introduction, function equality, and dictionaries (Today)
- Image and inverse images (Friday)
- Function properties and composition (next week Monday)
- Map, reduce, filter (next week Wednesday)
- Cardinality (next week Friday)
- Countability (week-after Monday, Apr 7)
- Review (week-after Wednesday, Apr 9)
- ► Test 3, on Ch 5 & 6 (week-after Friday, Apr 11)

Ex 5.2.8. Suppose R is a relation from a set X to a set Y and $A \subseteq X$. Is the following true? $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \subseteq A$.

Prove or give a counterexample.

Attempted proof. Suppose $x \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(A))$. [We want $x \in A$.]

By definition of image, there exists $y \in \mathcal{I}_R(A)$ such that $(y,x) \in R^{-1}$.

[From $y \in \mathcal{I}_R(A)$]

By definition of image, there exists $a \in A$ such that $(a, y) \in R$.

[From $(y, x) \in R^{-1}$]

By definition of relation inverse, $(x, y) \in R$

[We know $a \in A$, and both $(a, y) \in R$ and $(x, y) \in R$. Could it be that a = x? Doesn't seem to be a way to prove that... I seem stuck]

Counterexample. Let $X = \{x, a\}$, $A = \{a\}$, and $Y = \{y\}$. Let $R = \{(x, y), (a, y)\}$.

Then $R^{-1} = \{(y, x), (y, a)\}, \mathcal{I}_R(A) = \{y\}, \text{ and } \mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) = \{x, a\}$

In this example, $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \not\subseteq A$.

What about $A \subseteq \mathcal{I}_{R^{-1}}(\mathcal{I}(A))$?

A function is...

- ▶ a parameterized expression.
- a named piece of code that can be invoked many times in different contexts.
- an extension to the programming language.
- an abstract machine.
- a value.

Cross out the term/concept that was **not** used in the reading for today as a way to think about functions

A kind of machine A topological sort

A mapping between two collections A kind of relation

For the function $f: X \to Y$, X is the and Y is the

____.

function constant domain

codomain first-class value relation

Alice	×3498	
Bob	×4472	
Carol	×5392	
Dave	×9955	
Eve	×2533	
Fred	×9448	
Georgia	×3684	
Herb	×8401	

Not a function.

(There's a domain element that is related to two things.)

Not a function.

(There's a domain element that is not related to anything.)

A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

Definition of function

Informal: A *function* is a relation in which everything in the first set is related to *exactly one thing* in the second set.

Formal: $f \subseteq X \times Y$ is a function if

$$\forall \ x \in X, \qquad \exists \ y \in Y \mid (x,y) \in f$$
 existence of y

$$\land \ \forall \ y_1, y_2 \in Y, ((x,y_1),(x,y_2) \in f) \rightarrow y_1 = y_2 \text{ uniqueness of } y$$

Change of notation

Informal: A *function* is a relation in which everything in the first set is related to *exactly one thing* in the second set.

Formal (relation notation): $f \subseteq X \times Y$ is a function if

$$\forall \ x \in X, \qquad \exists \ y \in Y \mid (x,y) \in f$$
 existence of y

$$\land \quad \forall \ y_1, y_2 \in Y, ((x,y_1), (x,y_2) \in f) \rightarrow y_1 = y_2 \quad \text{uniqueness of } y$$

Formal (function notation): $f \subseteq X \times Y$ is a *function* if

$$\forall x \in X$$
, $\exists y \in Y \mid f(x) = y$ existence of y

$$\land \forall y_1, y_2 \in Y, (f(x) = y_1 \land f(x) = y_2) \rightarrow y_1 = y_2 \text{ uniqueness of } y$$

We call X the *domain* and Y the *codomain* of f.

Definition of function equality. Let $f, g: X \to Y$

Old definition: functions are sets.

$$f = g \text{ if } \forall f \subseteq g \land g \subseteq f$$

New definition: based on function notation.

$$f = g$$
 if $\forall x \in X, f(x) = g(x)$

Function equality: f = g if $\forall x \in X, f(x) = g(x)$

Let $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x \cdot (x - 1) - 6$ and g(x) = (x - 3)(x + 2).

Prove f = g.

The old and new definitions of function equality are equivalent.

Ex 7.2.1.
$$(\forall x \in X, f(x) = g(x))$$
 iff $(f \subseteq g \land g \subseteq f)$.

The old and new definitions of function equality are equivalent.

Ex 7.2.1.
$$(\forall x \in X, f(x) = g(x))$$
 iff $(f \subseteq g \land g \subseteq f)$.

Proof. First, suppose $\forall x \in X, f(x) = g(x)$, that is, f = g by definition of function equality. Further suppose $(x, y) \in f$. By function notation, f(x) = y. By supposition and substitution, g(x) = y. By relation notation, $(x, y) \in g$. Finally, $f \subseteq g$ by definition of subset.

Similarly $g \subseteq f$, and therefore f = g by definition of set equality.

Conversely, suppose $f \subseteq g \land g \subseteq f$, that is, f = g by definition of set equality. Further suppose $x \in X$.

Let y = f(x). Note that this $y \in Y$ must exist by definition of function. By relation notation, $(x, y) \in f$.

By definition of subset [or set equality], $(x, y) \in g$. In function notation, that is g(x) = y, and so f(x) = g(x) by substitution. Therefore f = g by definition of function equality. \square

For next time:

Do Exercises 6.1.(2,3,7,8,9,10,11).

Exercises 2 and 3 are function-equality proofs. The other exercises are programming problems.

Read Section 6.2.

Take quiz