Chapter 2 outline:
» Mathematical sequences and Python lists (last week Monday)
Recurrence relations and recursive functions (last week Wednesday)

Functions on lists (last week Friday)

Review Chapter 1 & 2 (today)
Test on Chapters 1 & 2 (Friday)

>

>

» More functions on lists (Monday)

>

>

» (Begin Chapter 3 next week Monday)

Today:
» General test comments
» Review of topics so far
> Specific test coaching
» How can | help you?

Goals of this course

>
>
| 2

Write programs in the functional style
Think recursively

Understand sets, relations, and
functions so that they can model
real-world (and abstract) information

Use formal logic to prove
mathematical propositions.

Concepts of the first two chapters
» Sets and their operations
» Sequences

» Python expressions, types, and
functions

» Python sets and lists

» Recursive algorithms

Concepts

1.1. Sets and elements; Z, W, N, Q, and
R as standard examples

1.2. Values, expressions, literals, types,
operators. The idea of a wvalue in
Python (or in computer memory) repre-
senting or modeling some real-world or
abstract/mathematical information. The
types int, float, bool, str, and type. Inte-
ger division and mod (// and %). String
operations—concatenation and multipli-
cation (+ and *), len, and in.

Testable skills

Analyze the type of a Python expression.
(Similarly, be able to do a type analysis
that involves the kinds of Python expres-
sions and the Python types that occur in
the subsequent sections.)

Concepts

1.3. Variables, identifiers, functions,
parameters (actual and formal), re-
turn value/statement, function applica-
tion. Functions as values that can be
stored in variables and passed to other
functions.

1.4. Denoting sets by listing elements and
using set-builder notation. The set type
in Python. Python set comprehensions.
Python ranges.

1.5. Set operations: union, intersection,
difference, symmetric difference, comple-
ment; subset, set equality. The universal
set and the empty set. Python set opera-
tors. The analogy between set operations
and arithmetic operations (on numbers).

Testable skills

Write simple Python functions. Write
Python functions that call other functions
and that take functions as parameters.

Describe a set using set-builder notation.
Write Python functions that use set com-
prehensions and range.

Write Python functions that use set oper-
ators.

Concepts

1.6. Verifying propositions about the
equality of set expressions using Venn dia-
grams.

1.7. Cardinality (modeled by len in
Python), disjointedness, pairwise disjoint-
edness, partitions, Cartesian products, tu-
ples.

1.8. Powersets.

Testable skills

Verify set equality propositions using Venn
diagrams, shading, labeling, and accompa-
nying verbal explanations.

Write Python functions that use tuples.

Write Python functions that use sets of
sets (which requires frozen sets).

Concepts

2.1. Sequences, zero-based indexing.
Python lists, subscripting/indexing (with
[1). List comprehensions. List concatena-
tion and multiplication. Negative indexing
and slicing.

2.2. Recurrence relations. Recursive func-
tions. Conditional expressions and state-
ments.

2.3. Recursive processing of lists, such as
splitting a list as xx[0] and xx[1:].

Testable skills

Write Python expressions using slicing,
negative indexing, etc.

Write Python functions that use list com-
prehensions, list operations, and various
forms of subscripting.

Write recursive Python functions.

Write recursive Python functions that pro-
cess lists.

For next time:
Study for test. ..

Read Sections 3.(1-3) for Friday (once you have Chapter 3...)

