Chapter 1 outline:

- ► Introduction, sets and elements (last week Monday)
- Python expressions (last week Wednesday)
- Python functions; denoting sets (last week Friday)
- Set operations; visual verification of set propositions (today)
- Cardinality, Cartesian products, powersets (Friday)
- (Begin Chapter 2 Sequence next week)

Today:

- Set operations
 - Definitions
 - Python representation
 - Properties; analogy with arithmetic
- Verifying propositions visually

$$\{1,5,7\} \not\subseteq \{1,7\} \quad \{1,5,7\} \not\subseteq \{1,4,7\} \quad \{1,5,7\} \subseteq \{1,5,7\} \quad \{1,5,7\} \subseteq \{1,4,5,7\}$$

$$\{1,5,7\} \not\subset \{1,7\} \quad \{1,5,7\} \not\subset \{1,4,7\} \quad \{1,5,7\} \not\subset \{1,5,7\} \quad \{1,5,7\} \subset \{1,4,5,7\}$$

$$\{1,5,7\} \neq \{1,7\} \quad \{1,5,7\} \neq \{1,4,7\} \quad \{1,5,7\} = \{1,5,7\} \quad \{1,5,7\} \neq \{1,4,5,7\}$$

$$\{1,5,7\} \supseteq \{1,7\} \quad \{1,5,7\} \not\supseteq \{1,4,7\} \quad \{1,5,7\} \supseteq \{1,5,7\} \quad \{1,5,7\} \not\supseteq \{1,4,5,7\}$$

$$\{1,5,7\} \supseteq \{1,7\} \quad \{1,5,7\} \not\supseteq \{1,4,7\} \quad \{1,5,7\} \not\supseteq \{1,5,7\} \quad \{1,5,7\} \not\supseteq \{1,4,5,7\}$$

Union The set of elements that are in either set

Intersection. The set of elements that are in both sets

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

$$\begin{array}{rcl} \{1,2,3\} \cup \{2,3,4\} & = & \{1,2,3,4\} \\ \{1,2\} \cup \{3,4\} & = & \{1,2,3,4\} \\ \{1,2\} \cup \{1,2,3\} & = & \{1,2,3\} \end{array}$$

$$X \cap Y = \{x \mid X \in X \text{ and } x \in Y\}$$

$$\begin{array}{rcl} \{1,2,3\} \cap \{2,3,4\} & = & \{2,3\} \\ \{1,2\} \cap \{3,4\} & = & \emptyset \\ \{1,2\} \cap \{1,2,3\} & = & \{1,2\} \end{array}$$

Difference. The set of elements that are $X - Y = \{x \mid x \in X \text{ and } x \notin Y\}$ in the first set and not the other.

Symmetric difference. The set of elements that are in either set but not

$$X - Y = \{x \mid x \in X \text{ and } x \notin Y\}$$

$$\begin{array}{rcl} \{1,2,3\} - \{2,3,4\} & = & \{1\} \\ \{1,2\} - \{3,4\} & = & \{1,2\} \\ \{1,2\} - \{1,2,3\} & = & \emptyset \end{array}$$

$$X \oplus Y = \{x \mid x \in X \cup Y \\ \text{and } x \notin X \cap Y\}$$

$$\begin{array}{rcl} \{1,2,3\} \oplus \{2,3,4\} & = & \{1,4\} \\ \{1,2\} \oplus \{3,4\} & = & \{1,2,3,4\} \\ \{1,2\} \oplus \{1,2,3\} & = & \{3\} \end{array}$$

Complement. The set of elements that are not in X

$$\overline{X} = \{x \mid x \in \mathcal{U} \text{ and } x \notin X\}$$

Let
$$\mathcal{U} = \{0, 1, 2, 3, 4\}$$

$$\frac{\overline{\{1, 2, 3\}}}{\overline{\{0, 2, 4\}}} = \{0, 4\}$$

$$\overline{\{0, 1, 2, 3, 4\}} = \emptyset$$

1.
$$\{1, 2, 3, 4, 5\} \cup \{5, 6, 7\} =$$

2.
$$\{1,2,3,4,5\} \cap \{2,4,6,8,10\} =$$

3.
$$\{1,2,3,4,5\} - \{2,3,4\} =$$

4.
$$\{1, 2, 3, 4, 5\} - \{3, 4, 5, 6, 7\} =$$

5.
$$\{1,2,3,4,5\} \oplus \{3,4,5,6,7\} =$$

Which of the following are equal to $\{1, 2, 3, 4\}$?

- **▶** {1,2} ∪ {3,4}
- **▶** {1, 2, 3} ∪ {4}
- \blacktriangleright {1, 2, 3} \cup {2, 3, 4}
- $\blacktriangleright \{1,2,3\} \cup \{3,4,5\}$
- \triangleright {2,3} \cup {1,4}
- **▶** {1} ∪ {3,4}
- **▶** {4, 3, 2, 1}
- $\blacktriangleright \ \{1\} \cup \{1,2\} \cup \{1,2,3\} \cup \{1,2,3,4\}$

Commutativity Union $A \cup B = B \cup A$

Intersection $A \cap B = B \cap A$ Symmetric difference $A \oplus B = B \oplus A$

Associativity Union $(A \cup B) \cup C = A \cup (B \cup C)$

Intersection $(A \cap B) \cap C = A \cap (B \cap C)$

Symmetric difference $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

Identity Union $A \cup \emptyset = A$

Intersection $A \cap \mathcal{U} = A$

Universal bounds Union $A \cup \mathcal{U} = \mathcal{U}$

Intersection $A \cap \emptyset = \emptyset$

Commutativity Addition
$$x + y = y + x$$

$$\textit{Multiplication} \quad x \cdot y = y \cdot x$$

Associativity Addition
$$(x + y) + z = x + (y + z)$$

$$\textit{Multiplication} \quad (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Identity Addition
$$x + 0 = x$$

Multiplication
$$x \cdot 1 = x$$

Universal bounds *Multiplication*
$$x \cdot 0 = 0$$

$$(A \cap B) - A$$

$$(A-B)\cup(B-A)$$

 $(A \cup B) \cap (A \cup C)$

 $\overline{(A\cap B)}\cap (A\cup C)$

$$A \cup (A \cap B) = A$$

$$A \cup \overline{A} = \mathcal{U}$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cap B = A - (A - B)$$

$$(A \cap C) - (C - B) = A \cap B \cap C$$

$$A \cup (A - B) = A$$

$$(A \cup (B - C)) \cap \overline{B} = A - B$$

For next time:

Pg 37: 1.5.(12, 13, 14, 15, 22, 23)

Pg 43: 1.6.(5, 7, 9, 11)

Highlighted exercises are programming exercises to be found in an accompanying notebook.

Read 1.(7 & 8)

Take quiz