
222 Case studies

1 For an accessible presentation
of the proof of this theorem, see
Thomas H. Cormen et al. Intro-
duction to Algorithms. 3rd ed. MIT
Press, 2009, pp. 191–194, pp. 191–
194. For the definitive exposition,
see Donald E. Knuth. The Art of
Computer Programming, Volume 3:
Sorting and Searching. 2nd ed. Ad-
dison Wesley Longman Publishing
Co., Inc., 1998, pp. 180-197.

It is the next episode in the quest for a better map, and it

anticipates the tree data structures of Chapter 5.

Together these topics continue the conversation of this

book: What ADTs are needed to support a given algorithm?

What data structures implement a given ADT? What algo-

rithms provide the operations of a given data structure?

3.1 Linear-time sorting algorithms

When you studied sorting algorithms—in Sections 1.3 and 1.4

or in an earlier course—you learned to discern good sorts

from bad sorts. Good sorts do work proportional to the size

of the sequence for each level in a binary tree, altogether

costing Θ(n lg n). Bad sorts do work proportional to the size

of the sequence for each element in the sequence, which costs

Θ(n2).

Good sorts Bad sorts

Merge Selection

Quick (expected case) Insertion

Shell (see Project 1.2) Bubble

Heap (see Section 3.3)

The ultimate measure for algorithms is their running time,

but as we saw in Section 1.4, counting the number of compar-

isons between elements in a sequence is a reasonable proxy

for running time when comparing sorting algorithms. At least

we can say that if the expected case of a sorting algorithm

makes Θ(n lg n) comparisons, then its running time must be

Ω(n lg n)—that is, it can’t be better than n lg n.

It turns out that Θ(n lg n) is in fact the best we can do for

the expected case of sorting algorithms that make decisions

by comparing elements in the sequence. Put formally,

Theorem 1 If T is an algorithm that sorts a sequence by compar-

ing pairs of elements in the sequence, then the expected running

time of T is Ω(n lg n).

Here is the intuition behind that result.1 The execution of

such a sorting algorithm entails a series of decisions based on

comparing two elements in the sequence, “Which comes first,

this one or that one?” Since any permutation of the sorted


