Chapter 4, Graphs:

- ► Concepts and implementation (**Today**)
- Traversal (next week Wednesday and in lab Thursday)
- ▶ Minimum spanning trees (next week Friday and week-after Monday)
- ► Single-source shortest paths (Feb 26 and 28)

Today:

- Applications of graphs
- Vocabulary, taxonomy, and theory
- Representing and implementing graphs

- Graph
- ► Vertex (compare *node*)
- ► Edge (compare *link*)
- ► Incident
- Adjacent
- Degree
- Complete
- Dense

- Sparse
- Directed graph
- Undirected graph
- ▶ Parallel edge
- Self loop
- Simple graph
- Weighted graph

Adjectives

Trivial Having only one vertex and no edges.

Simple Having no repeated *vertices* (except, possibly, the initial and terminal).

Closed Having the same vertex as initial and

terminal.

Nouns

Walk An alternating sequence of vertices and edges, each edge coming between its end points.

Path A walk with no repeated *edge* (repeated vertices are ok).

Circuit A closed path (no repeated edges, initial and terminal the same).

Cycle A simple circuit (no repeated edges or vertices, except the initial and terminal, which are the same).

	Adjacency matrix	Adjacency list
Space	$\Theta(V^2)$	$\Theta(V+E)$
adjacent(u, v)	$\Theta(1)$	$\Theta(deg(u))$ (expected case)
getAdjacents(u)	$\Theta(V)$	$\Theta(deg(u))$

Coming up:

Do heaps and priority queue project (due Wed, Feb 19)

Due Thurs, Feb 20 (but spread it out):

Read Section 4.(1–3)

Do Exercises 4.(1 & 19).

Take graph quiz