
Chapter 5, Dynamic Programming:

I Introduction and sample problems (last week Friday)

I Principles of DP (Monday)

I DP algorithms, solutions to sample problems (Wednesday)

I Optimal BSTs (Today)

I Review for Test 2 (next week Monday)

I No class (next week Wednesday)

I Test 2 (next week Thursday, in lab)

Today:

I Finishing matrix multiplication

I The optimal BST definition

I The optimal-BST-building problem

I The dynamic programming solution



Why this problem?

I It connects dynamic programming with the quest for a better map.

I Its hardness is in the right places (building the table—hard; reconstructing
solution—trivial).

I It is a representative of a bigger concept: What if we had more information—how
would that change the problem.

Game plan:

I Understand the problem itself

I Understand the recursive characterization

I Understand the table-building algorithm



The optimal binary search tree problem:

I Assume we know all the keys k0, k1, . . . kn−1 ahead of time.

I Assume further that we know the probabilities p0, p1, . . . pn−1 of each key’s
lookup.

I Assume even further that we know the “miss probabilities” q0, q1, . . . qn where qi
is the probability that an extraneous key falling between ki−1 and ki will be
looked up.

I We want to build a tree to minimize the expected cost of a look up, which is the
total weighted depth of the tree:

n−1∑
i=0

pi depth(ki ) +
n∑

i=0

qi depth(mi )

where depth(x) is the number of nodes to be inspected on the route from the
root to node x , ki stands for the node containing key ki [notational abuse], and
mi is the dummy node between keys ki−1 and and ki .

I Note that the rules of probability require
∑n−1

i=0 pi +
∑n

i=0 qi = 1



i 84 eat 24 ham 10 fox 7 rain 4
not 83 will 21 there 9 on 7 see 4
them 61 sam 19 train 9 tree 6 try 4
a 59 with 19 anywhere 8 say 5 boat 3
like 44 am 16 house 8 so 5 that 3
in 40 could 14 mouse 8 be 4 are 2
do 36 here 11 or 8 goat 4 good 2
you 34 the 11 box 7 let 4 thank 2
would 26 eggs 10 car 7 may 4 they 2
and 24 green 10 dark 7 me 4 if 1



Key or miss event combined frequency
{ } 0
a 59

{ am and anywhere are be boat box car could dark } 92
do 36

{ eat eggs fox goat good green ham here house } 86
i 84

{ if let } 5
in 40
{ } 0

like 44
{ may me mouse } 16

not 83
{ on or rain same say see so thank that the } 65

then 61
{ there they train tree try will with would } 99

you 34
{ } 0



0 1 2 3 4 5 6 7
ki a do i in like not then you

pi .073 .045 .104 .05 .055 .103 .076 .042
qi .001 .113 .107 .006 .001 .02 .081 .122 .001

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02 .081

.122

.001

in .05

you .042

.122 .001

.107a .073

.113.001

do .045

i .104

then .076

in .05

.001.006

.02

like .055

not .103

.081



1 · .02 + 1 · .081
= .101 +4 · .001 + 4 · .133 + 4 · .107 + 4 · .006
+3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

.02 .081

1 1

1

2



2 · .02 + 2 · .081
+1 · .103 + 1 · .122
= .427 +3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

not .103

.02

.122

.081

1

2 2

1

1

2



3 · .02 + 3 · .081
+2 · .103 + 2 · .122
+1 · .001 + 1 · .133 + 1 · .107 + 1 · .006 + 1 · .076 + 1 · .001
= 1.057 +2 · .045 + 2 · .055
+1 · .05
= 3.857

.001 .113 .107 .006 then .076

not .103

.02

.122

.001

.081

1 1 1

2

3 3

1

2

11

1



4 · .02 + 4 · .081
+3 · .103 + 3 · .122
+2 · .001 + 2 · .133 + 2 · .107 + 2 · .006 + 2 · .076 + 2 · .001
+1 · .073 + 1 · .104 + 1 · .001 + 1 · .042
= 1.907 +1 · .05
= 3.857

.001 .113 .107 .006

i .104a .073 .001 you .042

then .076

not .103

.02

.122

.001

.081

1 1 1

2 2 2

3

4 4

2

3

22

1

1



5 · .02 + 5 · .081
+4 · .103 + 4 · .122
+3 · .001 + 3 · .133 + 3 · .107 + 3 · .006 + 3 · .076 + 3 · .001
+2 · .073 + 2 · .104 + 2 · .001 + 2 · .042
+1 · .045 + 1 · .055
= 2.857 = 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



6 · .02 + 6 · .081
+5 · .103 + 5 · .122
+4 · .001 + 4 · .133 + 4 · .107 + 4 · .006 + 4 · .076 + 4 · .001
+3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

in .05

.081

1

3 3 3

4 4 4

5

6 6

4

5

44

3

22



4 · .001 + 3 · .073 + 4 · .133 + 2 · .045 + 4 · .107 + 3 · .104 + 4 · .006
+1 · .05
+3 · .001 + 2 · .055 + 6 · .02 + 6 · .081 + 4 · .076 + 5 · .122 + 3 · .042 + 4 · .001
= 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

in .05

.081

1

3 3 3

4 4 4

5

6 6

4

5

44

3

22



3 · .001 + 2 · .073 + 3 · .133 + 1 · .045 + 3 · .107 + 2 · .104 + 3 · .006
+.001 + .073 + .133 + .045 + .107 + .104 + .006
+.05
+2 · .001 + 1 · .055 + 5 · .02 + 5 · .081 + 3 · .076 + 4 · .122 + 2 · .042 + 3 · .001
+.001 + .055 + .02 + .081 + .076 + .122 + .042 + .001
= 3.857

in .05

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



3 · .001 + 2 · .073 + 3 · .133 + 1 · .045 + 3 · .107 + 2 · .104 + 3 · .006
+2 · .001 + 1 · .055 + 5 · .02 + 5 · .081 + 3 · .076 + 4 · .122 + 2 · .042 + 3 · .001
+.001 + .073 + .133 + .045 + .107 + .104 + .006
+.05
+.001 + .055 + .02 + .081 + .076 + .122 + .042 + .001
= 3.857

in .05

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



Total weighted depth for a given tree (expected lookup cost):

n−1∑
i=0

pidepth(ki )︸ ︷︷ ︸
keys

+
n∑

i=0

qi depth(mi )︸ ︷︷ ︸
misses

Let depthka(ki ) be the depth of the node with ki in the subtree rooted at node with
k1. For example, if kr is the root of the entire tree and ka is a child of the root, then

depthkr (ki ) = depthka(ki ) + 1

Then we can rewrite the total weighted depth as

r−1∑
i=0

pi depthkr (ki ) +
r∑

i=0

qi depthkr (mi )︸ ︷︷ ︸
left subtree total weighted depth (absolute)

+pr+
n−1∑

i=r+1

pi depthkr (ki ) +
n∑

i=r+1

qi depthkr (mi )︸ ︷︷ ︸
right subtree total weighted depth (absolute)



Again, let kr be the root of the entire tree and ka and kb be the root’s children. Then

r−1∑
i=0

pi (depthka(ki ) + 1) +
r∑

i=0

qi (depthka(mi ) + 1)︸ ︷︷ ︸
left subtree total weighted depth (absolute)

+pr+
n−1∑

i=r+1

pi (depthkb(ki ) + 1) +
n∑

i=r+1

qi (depthkr (mi ) + 1)︸ ︷︷ ︸
right subtree total weighted depth (absolute)

Convert to “relative depth”:

n−1∑
i=0

pi +
n∑

i=0

qi︸ ︷︷ ︸
total probability

+
r−1∑
i=0

pi depthka(ki ) +
r∑

i=0

qi depthka(mi )︸ ︷︷ ︸
left subtree total weighted depth (relative)

+
n−1∑

i=r+1

pi depthkb(ki ) +
n∑

i=r+1

qi depthkr (mi )︸ ︷︷ ︸
right subtree total weighted depth (relative)

Let TWD(k) be the total weighted depth of the tree rooted at k (relative to k) and
TP(k) be the total probability of the tree rooted at k. Then

TWD(kr ) = TP(kr ) + TWD(ka) + TWD(kb)



Let P[i ][j ] be the total probabilities of the keys and misses in the range [i , j ]:

P[i ][j ] =

j∑
k=i

pk +

j+1∑
k=i

qk

Let C [i ][j ] be the least total weighted depth of any BST composed from keys in the
range [i , j ]. The recursive characterization is

C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

best

subtree for

qi

[i + 1, j ]

ki

best

subtree for

best

subtree for

kr

[r + 1, j ][i , r − 1]

best

subtree for

kj

[i , j − 1]

qj+1

qi + C [i + 1][j ] C [i ][r − 1] + C [r + 1][j ] C [i ][j − 1] + qj+1



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

kfka kc kdkbke

C [c][d ]C [a][b]

C [e][f ]



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

P[i ][j ] =


qi + pi + qi+1 if i = j

qi + pi + P[i + 1][j ]
or P[i ][r − 1] + pr + P[r + 1][j ] for r ∈ (i , j)
or P[i ][j − 1] + pj + qj+1

 if i < j



0 1 2 3 4 5 6 7
ki a do i in like not then you

pi .073 .045 .104 .05 .055 .103 .076 .042
qi .001 .113 .107 .006 .001 .02 .081 .122 .001

2.916/2

2.125/5

.818/1 .691/6

.301 .485 .33 .064 .097 .305 .482 .288

3.205/2

2.819/5

2.119/2 2.567/5

1.458/61.873/51.783/21.538/2

1.202/2 1.247/21.24/1 1.212/5 1.227/6

1.038/61.018/6.613/5.666/2.975/21.08/1

.747/1 .439/2 .216/4 .438/5 .829/6

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

i j





Coming up:

Catch up on projects. . .
(Recommended: Do LL RB project for your own practice)
Do Optimal BST project (Due Mon, Apr 14)

(See Canvas for practice problems for Test 2)

Due Fri, Apr 4 (end of day)
Read Section 6.5
(No quiz on Section 6.5)

Due Fri, Apr 11 (end of day)
Read Sections 7.(1 & 2)
Take quiz


