Chapter 5, Dynamic Programming:

» Introduction and sample problems (last week Friday)
Principles of DP (Monday)
DP algorithms, solutions to sample problems (Wednesday)
Optimal BSTs (Today)
> Review for Test 2 (next week Monday)

v

v

v

» No class (next week Wednesday)
» Test 2 (next week Thursday, in lab)

Today:
» Finishing matrix multiplication
» The optimal BST definition
» The optimal-BST-building problem

» The dynamic programming solution

Why this problem?
> It connects dynamic programming with the quest for a better map.

» Its hardness is in the right places (building the table—hard; reconstructing
solution—trivial).

> It is a representative of a bigger concept: What if we had more information—how
would that change the problem.

Game plan:
» Understand the problem itself
» Understand the recursive characterization

» Understand the table-building algorithm

The optimal binary search tree problem:

>

>

>

Assume we know all the keys ko, k1, ... k,—1 ahead of time.

Assume further that we know the probabilities pg, p1, ... pn—1 of each key's
lookup.

Assume even further that we know the “miss probabilities” qo, g1, ...q, where g;
is the probability that an extraneous key falling between k;_1 and k; will be
looked up.

We want to build a tree to minimize the expected cost of a look up, which is the
total weighted depth of the tree:

n—1 n
Z pi depth(k;) + Z q;i depth(m;)
i=0 i=0

where depth(x) is the number of nodes to be inspected on the route from the

root to node x, k; stands for the node containing key k; [notational abuse], and
m; is the dummy node between keys k;_; and and k;.

Note that the rules of probability require Z?:_ol pi+ >t oqi=1

not
them

like
in

do
you
would
and

84
83
61
59
44
40
36
34
26
24

eat
will
sam
with

could
here
the
eggs
green

24
21
19
19
16
14
11
11
10
10

ham
there
train
anywhere
house
mouse

or

box

car
dark

—_
o

~N N N 00 00 00 0O O

fox
on
tree
say
so
be
goat
let
may
me

AR AR PAOOOCO N~

rain
see
try
boat
that
are
good
thank
they
if

F NN DNMNDNDWWSE D™D

Key or miss event combined frequency

{7 0

59

{ am and anywhere are be boat box car could dark } 92
do 36

{ eat eggs fox goat good green ham here house } 86
i 84

{if let } 5

in 40

{} 0

like 44

{ may me mouse } 16

not 83

{ on or rain same say see so thank that the } 65
then 61

{ there they train tree try will with would } 99
you 34

{} 0

0 1 2 3 4 5 6 7
ki a do i in 1like not then you
pi .073 .045 .104 .05 .055 .103 .076 .042
g; .001 .113 .107 .006 .001 .02 .081 .122 .001

in .05 i.104
do .045 like .055 do .045 then .076
/N /N / A\ /N
a.073 i.104 .001 you .042 a.073 .107 not .103 you .042
/N /N / N\ /N SN
.001 .113 .107 .006 then .076 .001 .001 .13 like .055 .081 .122 .001
/N / A\
not.103 .122 in .05 .02

/N / N\

.02 .081 .006 .001

1-.02+1-.081
=.101

.02 .081

2-.02+2-.081
+1-.103+1-.122
= 427

1not.103 .1221
2/ \ 2
.02

.081

3-.02+3-.081

+2-.103+2-.122
+1-.001+1-.133+1-.107+1-.006+1-.076+1-.001
= 1.057

1 11 1 ’ ’
001 113 .107 .006 then .076 .001

o/ \

not .103 .122
s/ \ 3
.02

.081

4..02+4-.081

+3-.103+3-.122
+2-.001+2-.133+2-.107+2-.006 +2-.076 + 2 -.001
+1-.073+1-.104+1-.001+1-.042

= 1.907
1 1, 1 1
a.073 i.104 .001 you .042
2/ N22o/ N2,/ N\,
.001 .113 .107 .006 then .076 .001
s/ \
not .103 .122

404\4

.081

5-..02+5-.081

+4-.103 +4-.122

+3-.001 +3-.133+3-.107 +3-.006 + 3 -.076 + 3 -.001
+2-.073+2-.104 +2-.001 +2-.042
+1-.045+1-.055

= 2.857
1) 1
do .045 like .055
SN, N
a.073 i.104 .001 you .042
s/ Nas/ N\s o/ \
.001 113 107 .006 then .076 .001
VAR
not .103 .122

504\5

.081

6-.02+6-.081

+5-.103+5-.122
+4-.001+4-.133+4-.107+4-.006+4-.076 +4-.001
+3..073+3-.104+3-.001 +3-.042
+2-.045 + 2 -.055
+1-.05
= 3.857
1
in .05
do .045 like .055
; / 3\ 5 / \
a.073 i.104 .001 you .042
s/ N4/ \4 VAR
.001 .113 .107 .006 then .076 .001
s /N
not .103 .122

6/ \ &
.02

.081

4.001+3-.073+4-.133+2-.045+4-.107+3-.104 +4-.006
+1-.05
+3-.001+2-.055+6-.02+6-.081+4-.076+5-.122+3-.042 + 4 -.001

= 3.857
1

in .05
/ \

do .045 like .055

. SN LN
a.073 i.104 .001 you .042
e/ Naa/ Na ./ N\

.001 .113 .107 .006 then .076 .001
s /N

not .103 .122
6/ \ s
.02

.081

3-.0014+2-.0734+3-.1334+1-.045+4+3-.107 +2-.104 + 3 -.006

+.001 4 .073 + .133 + .045 + .107 + .104 + .006

+.05
+2-.001+1-.055+5-.02+5-.081+3-.076 +4-.122+2-.042 +3-.001
+.001 + .055 + .02 +.081 + .076 + .122 + .042 + .001

= 3.857

in .05

1 1
do .045 like .055

o o\, N

a.073 i.104 .001 you .042

s/ Nas/ N\s ./ \

.001 .113 .107 .006 then .076 .001

PRV

not .103 .122
5/ \ s
.02

.081

3-.0014+2-.0734+3-.1334+1-.045+4+3-.107 +2-.104 + 3 -.006
+2-.001+1-.055+5-.02+5-.081+3-.076 +4-.122+2-.042 +3-.001
+.001 4-.073 + .133 + .045 4 .107 4 .104 + .006

+.05
+.001 + .055 + .02 4+ .081 4 .076 + .122 + .042 + .001
= 3.857
in .05
1 , 1
do .045 like .055
NN
a.073 i.104 .001 you .042
s/ Nss/ N\s ./ \
.001 113 .107 .006 then .076 .001
PRV

not .103 .122
5/ \ s
.02

.081

Total weighted depth for a given tree (expected lookup cost):

n—1 n
Z pidepth(k;) + Z q;i depth(m;)
i=0

i=0

keys misses

Let depth, (k;) be the depth of the node with k; in the subtree rooted at node with
ki. For example, if k, is the root of the entire tree and k, is a child of the root, then

depth, (k;) = depth, (ki) + 1

Then we can rewrite the total weighted depth as

r—1
> pi depthy, (ki) + Zq, depthy, (m;) +pr+ Z p; depth, (k Z q; depth (m;)
i=0 i=0 i=r+1 i=r+1

-~

left subtree total weighted depth (absolute) right subtree total weighted depth (absolute)

Again, let k, be the root of the entire tree and k, and k; be the root's children. Then

n—1 n
Zpl depth; (ki) + 1) + Z qi(depthy, (mi) + 1) +p+ Y pi(depthy, (k) +1)+ Y qi(depth, (m;)+1)
i=0 i=r+1 i=r+1

left subtree total weighted depth (absolute) right subtree total weighted depth (absolute)
Convert to “relative depth”:
n—1 n r—1 r n—1
> pi+ Y ai+ Y pi depthy (ki) + > qi depthy (mi)+ > pi depthy, (ki Z qi depth, (m;)
i=0 i=0 i=0 i=0 i=r+1 i=r+1
total probability left subtree total weighted depth (relative) right subtree total weighted depth (relative)

Let TWD(k) be the total weighted depth of the tree rooted at k (relative to k) and
TP(k) be the total probability of the tree rooted at k. Then

TWD(k,) = TP(k;) + TWD(k,) + TWD(kp)

Let P[i][j] be the total probabilities of the keys and misses in the range [/, /]:

J+1

PUIT =Y P+ Y
k=i k=i

Let C[i][j] be the least total weighted depth of any BST composed from keys in the
range [i,j]. The recursive characterization is

2q; + pi + 2qi41 ifi=j

Clill = qi + Cli+1][/]
P[]+ min < C[i][r — 1]+ C[r + 1][j] for r € (i,j) ¢ ifi<j
Cll = 1+ g1

2qg; + pi +29i11 ifi=j

Clill] = gi + Cli + 1][J]
P[] + min ¢ C[i][r — 1] + C[r + 1][j] for r € (i,]) if i<
Clll =1+ gjma
ki ke kj
/ \
i dj+1
best best best best
subtree for subtree for subtree for subtree for
[i+1,] li,r—1] [r+1,j] [i,j—1]

qi + Cli+1]0] Clillr — 1]+ C[r +1][1] ClU =1+ g

2q;i + pi + 2qi41 ifi=j

qi + Cli +1][/]
P[] + min¢ Cli][r — 1] 4+ C[r + 1][j] for r € (i,)) if i <j
ClAU — 1] + gj1

Clil] =

Cla](b]

Clill =

2q; + pi +29i11 if i =

gi + Cli + 1][J]
P[] + min ¢ C[i][r — 1] + C[r + 1][j] for r € (i,]) ifi<j
Clil — 1+ gj+1

qi + pi + Giy1 ifi=j

or Plillr — 1]+ pr + Plr+ 1][j] for r € (i.))

Pl = { qi + pi + P[i + 1][j] }
if i<y

or Pl — 1]+ pj + gj+1

0 1 2 3 4 5 6 7
ki a do i in 1like mnot then you
pi .073 .045 .104 .05 .055 .103 .076 .042
g; .001 .113 .107 .006 .001 .02 .081 .122 .001

et
SeE e
ERERERERRER

2

592 CHAPTER 6. DYNAMIC PROGRAMMING

For each candiate root r between i and j exclusive
for r in range(i+l1,j):
The cost of making key r the root
current_subtree cost = (total weighted depths[i][r-1] +
total weighted depths[r+1][j])
If its cost is better than best so far, it's the new best so far
if current_subtree cost < least_subtree_ cost :
least subtree cost = current subtree cost
best_root = r

The cost of making key j the root
current_subtree cost = total weighted depths[i][j-1] + miss probs[j+1]
If its cost is better than best-so-far, it's the new best-so-far
if current subtree cost < least subtree cost :
least subtree cost = current subtree cost
best_root = j
Record the best option and corresponding cost in the tables
total weighted depths[i][j] = total probs[il[j] + least subtree cost
decisions[i][j] = best root

From its similarity to the algorithm for optimal matrix
multiplication, we recognize the running time for building the
tables as ©(n’). See Exercise 6.47 for details.

The value C[0][# — 1] in total weighted depths[8][n-1]
gives us the cost of the best tree for the given keys with their
probabilities. As with other dynamic programming problems,
a more useful result is the tree itself. Exercise 6.48 asks you to
write a function that reconstructs the optimal binary search
tree using a populated decision table, but for Project 6.2 we
have an alternate strategy. Instead of reconstructing the tree
after building the table, we build the actual optimal subtrees
along with the table. Instead of a table of decisions as in the
algorithm above, we maintain a table such that in position
(i, j) we store the root of the best subtree for keys k; through
kj.

Coming up:

Catch up on projects. ..
(Recommended: Do LL RB project for your own practice)
Do Optimal BST project (Due Mon, Apr 14)

(See Canvas for practice problems for Test 2)

Due Fri, Apr 4 (end of day)
Read Section 6.5
(No quiz on Section 6.5)

Due Fri, Apr 11 (end of day)
Read Sections 7.(1 & 2)
Take quiz

