
Chapter 5, Dynamic Programming:

▶ Introduction and sample problems (last week Friday)

▶ Principles of DP (Today)
▶ DP algorithms, solutions to sample problems (next week Wednesday)

▶ Optimal BSTs (next week Friday)

▶ Review for Test 2 (week-after Monday)

▶ No class (week-after Friday)

▶ Test 2 (week-after Thursday, in lab)

Today:

▶ Finishing of coin-changing problem
▶ Introduction of three problems

▶ 0-1 Knapsack
▶ Longest common subsequence
▶ Matrix multiplication

▶ Elements of dynamic programming
▶ Optimization problems
▶ Optimal substructure
▶ Dynamic programming algorithms

▶ Solution to the knapsack problem (time permitting)



Coming up:

Catch up on projects. . .
(Recommended: Do LL RB project for your own practice)

Due Mon, Mar 31
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take quiz (DP intro)

Due Tues, Apr 1
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz (DP principles)

Due Thurs, Apr 3
Read Section 6.4
Take quiz (DP algorithms)



Dynamic programming. An algorithmic technique, often applied to optimization
problems, in which the inefficiency of overlapping subproblems is avoided
by memoization.

Memoization. An algorithmic technique where results of functions or subproblems are
stored for later retrieval.

Optimization. A category of algorithmic problem in which one needs to construct an
object to minimize a cost or maximize a value.

Overlapping subproblems. When a recursion tree for a formula contains multiple
instances of the same subproblem

Recursive characterization. A formula that relates problems to subproblems of the
same kind.



Coin-changing

General problem: Given an amount and a currency system, what is the best way
(fewest number of coins) to make change for that amount in that currency system.

Example problem instance: What is the best way to make change for 14 units using
coins of values [1,3,4,6]?

Example subproblem instance: [If we use one 6-unit coin, then] what is the best way to
make change for [the remaining] 8 units using [only the remaining coins] of values
[1,3,4]

Formal notation: Let C [i ][j ] be the fewest number of coins needed to make change for
amount i using coin denominations 0 through j .



Let C [i ][j ] stand for the fewest number of coins needed to make change for amount i
using only coins 0 through j .

C [i ][j ] =



0 if i = 0

i if j = 0

min0≤k≤ i
D[j]

{k + C [i − k · D[j ]] [j − 1]} otherwise



0-1 Knapsack.
Given a capacity c and the value and weight of n items in arrays V and W ,
find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

V 20 15 90 100
W 1 2 4 5

0 1 2 3

c = 7

set weight value
{2, 3} 9 190 exceeds capacity
{1, 3} 7 115 not optimal
{0, 1, 2} 7 125 optimal



Longest common subsequence.
Given two sequences, find the longest subsequence that they have in common.

D A T A S T R U C T U R E S
A L G O R I T M S

A A A A A B
A B A A A A

not
A A A A A B
A B A A A A

A A A A A B A A A A
A B A A A A

not
A A A A A B A A A A
A B A A A A



Matrix multiplication.(
2 8
5 7

)(
3 6
1 4

)
=

(
2 · 3 + 8 · 1 2 · 6 + 8 · 4
5 · 3 + 7 · 1 5 · 6 + 7 · 4

)
=

(
14 44
22 58

)

(
1 3 12
2 7 11

)4 10
8 6
9 5

 =

(
1 · 4 + 3 · 8 + 12 · 9 1 · 10 + 3 · 6 + 12 · 5
2 · 4 + 7 · 8 + 11 · 9 2 · 10 + 7 · 6 + 11 · 5

)
=

(
136 88
163 117

)

(
1 2 5
6 8 9

)3
7
4

 =

(
1 · 3 + 2 · 7 + 5 · 4
6 · 3 + 8 · 7 + 9 · 4

)
=

(
37
110

)



Matrix multiplication.
Given n + 1 dimensions of of n matrices to be multiplied, find the optimal
order in which to multiply the matrices, that is, find the parenthesization of
the matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: A, 3× 5; B, 5× 10; C , 10× 2,
D, 2× 3; E , 3× 4.

(A× B)× (C × (D × E )) 3 · 5 · 10 + 2 · 3 · 4 + 10 · 2 · 4 + 3 · 10 · 4 = 374

(A× (B × C ))× (D × E ) 5 · 10 · 2 + 2 · 3 · 4 + 3 · 5 · 2 + 3 · 2 · 4 = 178

A× (B × (C × (D × E ))) 2 · 3 · 4 + 10 · 2 · 4 + 5 · 10 · 4 + 3 · 5 · 4 = 364



Problem Thing to find Optimization Constraint

Coin-changing A bag of coins. Minimize the number of coins. The coins’ values sum to the
given amount.

Knapsack A set of objects Maximize the sum of the
objects’ values.

The sum of the objects’
weights doesn’t exceed the
given capacity.

Longest common
subsequence

A subsequence in each
of two given sequences.

Maximize the length of the
subsequences.

The subsequences have the
same content.

Matrix multiplication A way to parenthesize
the the matrices being
multiplied.

Minimize the number of scalar
multiplications required.

The parenthesization is
complete and mathematically
coherent.

Optimal BST A BST for a given set
of keys

Minimize the expected length
of a search.

The tree satisfies the criteria
for a BST.



Progression of dynamic-programming problems:

1. Problem statement . . . recognizing optimal substructure

2. Recursive characterization . . . recognizing overlapping subproblems

3. Dynamic programming algorithm

Make a table for subproblems
Initialize base cases in the table
For all other subproblems / cells in the table

For each option in the decision for that subproblem
Lookup subsubproblem results and compare

Record best choice for that subproblem
Return minimum cost or maximum value for top-level problem



0-1 Knapsack.
Given a capacity c and the value and weight of n items in arrays V and W ,
find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

V 20 15 90 100
W 1 2 4 5

0 1 2 3

c = 7

set weight value
{2, 3} 9 190 exceeds capacity
{1, 3} 7 115 not optimal
{0, 1, 2} 7 125 optimal



Knapsack
Let B[i ][j ] be the value of the best way to fill remaining knapsack capacity i using only
items 0 through j . Then B[c][n− 1] is the value-solution to the entire problem, that is,

B[c][n − 1] = max
K

n−1∑
j=0

K [j ]V [j ]

In the general case we have the choice between

V [j ]︸︷︷︸
value of
the jth
item

+B[i −W [j ]︸ ︷︷ ︸
remaining
capacity
after

taking the
jth item

][j − 1]

︸ ︷︷ ︸
The best way to
fill the remaining
capacity with the
remaining items

versus B[i ][j − 1]︸ ︷︷ ︸
The best way to
fill the unchanged
capacity with the
remaing items



Knapsack

B[i ][j ] =



0 if j = 0 and W [0] > i (0th doesn’t fit)

V [0] if j = 0 and W [0] ≤ i (0th fits)

B [i ] [j − 1] if W [j ] > i (jth doesn’t fit)

max


V [j ] + B [i −W [j ]] [j − 1] ,

B [i ] [j − 1]

 otherwise (j fits)



Coming up:

Catch up on projects. . .
(Recommended: Do LL RB project for your own practice)

Due Mon, Mar 31
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take quiz (DP intro)

Due Tues, Apr 1
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz (DP principles)

Due Thurs, Apr 3
Read Section 6.4
Take quiz (DP algorithms)


