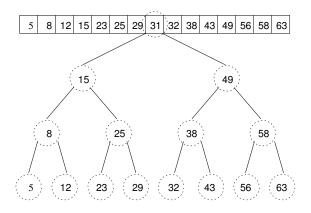
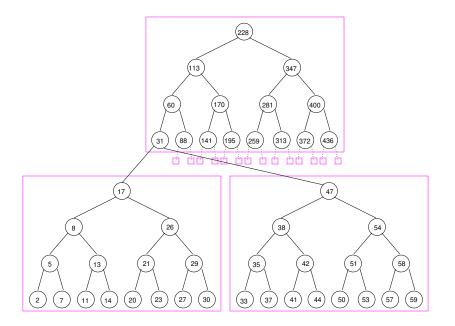
Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (spring-break eve; finished last week Monday)
- AVL trees (last week Monday and Wednesday)
- Traditional red-black trees (last week Friday, finished Monday)
- Left-leaning red-black trees (Monday, finish Today)
- "Wrap-up" BST (Today)
- Begin dynamic programming (Friday)
- ► Test 2 Thursday, Apr 10

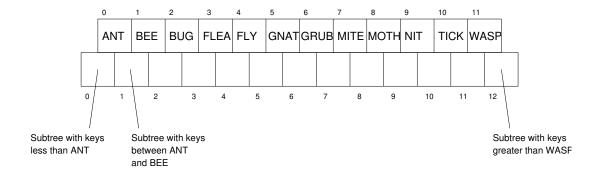
Today:

- Balanced tree comparisons
- Survey of B-trees



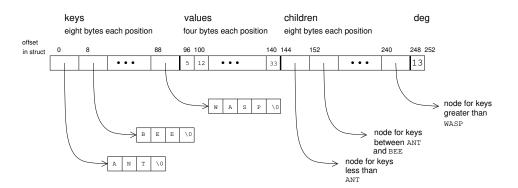


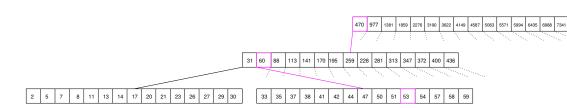
															31	60	88	113	141	170	195	259	228	281	313	347	372	400	436	
								_								7		_	_		\	`		**********	******					Tanana and American Tanana
2	5	7	8	11	13	14	17	20	21	23	26	27	29	30		33	35	37	38	41	42	44	47	50	51	53	54	57	58	59

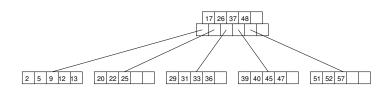


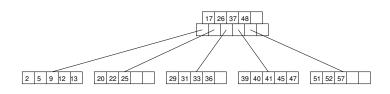
Formally, a B-tree with maximum degree M over some ordered key type is either

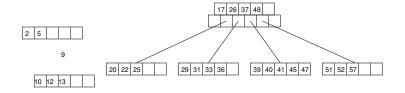
- empty, or
- ightharpoonup a node with with d-1 keys and d children, designated as lists keys and children such that
 - $ightharpoonup [M/2] \le d \le M$,
 - children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
 - ▶ for all $i \in [1, d-1)$, children[i] is a B-tree such that all of the keys in that tree are greater than keys[i-1] and less than keys[i],
 - ▶ and children[d-1] is a B-tree such that all of the keys in that tree are greater than keys[d-2].

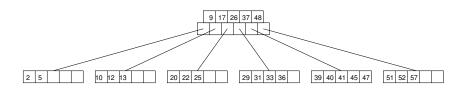


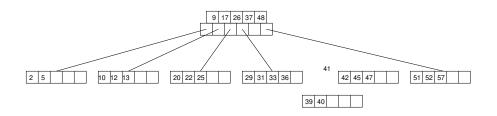


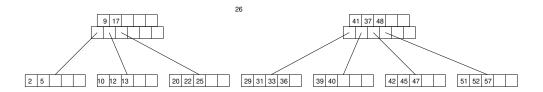


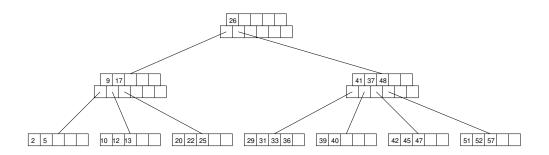












$$\underbrace{(M-1)}_{\text{keys per}} \sum_{i=0}^{h-1} M^i = (M-1) \frac{M^h-1}{M-1} = M^h-1$$
node sum of nodes at each level
$$n = M^h-1$$

$$M^h = n+1$$

 $h = \log_M(n+1)$

$$n = M^{h} - 1$$

$$M^{h} = n + 1$$

$$h = \log_{M}(n+1)$$

$$h = \log_{\frac{M}{2}}(n+1) = \frac{\log_{M}(n+1)}{1 - \log_{M} 2}$$

Cost of a search:

$$\lg M \cdot h = \lg M \cdot \frac{\log_M(n+1)}{1 - \log_M 2}$$

$$= \lg M \frac{\frac{\lg(n+1)}{\lg M}}{1 - \frac{\lg 2}{\lg M}}$$

$$= \frac{\lg(n+1)}{1 - \frac{1}{\lg M}}$$

$$= \frac{\lg M}{\lg M - 1} \lg(n+1)$$

Compare: $1.44 \lg n$ for AVL trees, $2 \lg n$ for RB trees.

Let c_0 be the cost of searching at a node (proportional to $\lg M$) and c_1 be the cost of reading a node from memory. The the cost of an entire search is

$$(c_0 + c_1) \frac{\log_M(n+1)}{1 - \log_M 2}$$

Now, consolidate the constants by letting $d = \frac{c_0 + c_1}{1 - \log_M 2}$, and we have

$$d\log_M(n+1)$$

Coming up:

Do BST rotations project (due Wed, Mar 19)—nothing to turn in Do AVL trees project (due Mon, Mar 24) Do Traditional RB project (due Fri, Mar 28)

Due **Wed, Mar 26** (end of day)—but spread it out Read Sections 5.(4-6) Do Exercise 5.13 Take quiz (red-black trees)

Due **Mon, Mar 31** (end of day) Read Section 6.(1&2) Do Exercises 6.(5–7) Take quiz

Due **Tues, Apr 1** (end of day) Read Section 6.3 Do Exercises 6.(16, 19, 23, 33) Take quiz