
Chapter 5, Binary search trees:

▶ Binary search trees; the balanced BST problem (spring-break eve; finished last
week Monday)

▶ AVL trees (last week Monday and Wednesday)

▶ Traditional red-black trees (last week Friday, finished Monday)

▶ Left-leaning red-black trees (Monday, finishToday)

▶ “Wrap-up” BST (Today)

▶ Begin dynamic programming (Friday)

▶ Test 2 Thursday, Apr 10

Today:

▶ Balanced tree comparisons

▶ Survey of B-trees
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Formally, a B-tree with maximum degree M over some ordered key type is either

▶ empty, or
▶ a node with with d − 1 keys and d children, designated as lists keys and

children such that
▶ ⌈M/2⌉ ≤ d ≤ M,
▶ children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
▶ for all i ∈ [1, d − 1), children[i ] is a B-tree such that all of the keys in that tree are

greater than keys[i − 1] and less than keys[i ],
▶ and children[d − 1] is a B-tree such that all of the keys in that tree are greater

than keys[d − 2].
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(M − 1)︸ ︷︷ ︸
keys per
node

h−1∑
i=0

M i

︸ ︷︷ ︸
sum of
nodes
at each
level

= (M − 1)
Mh − 1

M − 1
= Mh − 1

n = Mh − 1

Mh = n + 1

h = logM(n + 1)



n = Mh − 1

Mh = n + 1

h = logM(n + 1)

h = logM
2
(n + 1) =

logM(n + 1)

1− logM 2



Cost of a search:

lgM · h = lgM · logM(n+1)
1−logM 2

= lgM

lg(n+1)
lgM

1− lg 2
lgM

= lg(n+1)

1− 1
lgM

= lgM
lgM−1 lg(n + 1)

Compare: 1.44 lg n for AVL trees, 2 lg n for RB trees.



Let c0 be the cost of searching at a node (proportional to lgM) and c1 be the cost of
reading a node from memory. The the cost of an entire search is

(c0 + c1)
logM(n + 1)

1− logM 2

Now, consolidate the constants by letting d = c0+c1
1−logM 2 , and we have

d logM(n + 1)



Coming up:

Do BST rotations project (due Wed, Mar 19)—nothing to turn in
Do AVL trees project (due Mon, Mar 24)
Do Traditional RB project (due Fri, Mar 28)

Due Wed, Mar 26 (end of day)—but spread it out
Read Sections 5.(4-6)
Do Exercise 5.13
Take quiz (red-black trees)

Due Mon, Mar 31 (end of day)
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take quiz

Due Tues, Apr 1 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz


