Chapter 5, Binary search trees:

» Binary search trees; the balanced BST problem (spring-break eve; finished last
week Monday)

AVL trees (last week Monday and Wednesday)

Traditional red-black trees (last week Friday, finished Monday)
Left-leaning red-black trees (Monday, finishToday)

“Wrap-up” BST (Today)

Begin dynamic programming (Friday)

Test 2 Thursday, Apr 10

vVvyYvyVvVvyVvyy

Today:
» Balanced tree comparisons
» Survey of B-trees

5] 8‘12‘15‘23‘25‘29""‘5;":}32‘38‘43‘49‘56‘58‘63‘

/\ /\
/\/\ /\ /\\

ol
o 8
O

o

g

‘31 ‘60 ‘88 ‘113‘141 ‘170‘195 ‘259‘228‘281 ‘313‘347‘372‘400‘436‘

‘2 ‘5 ‘7 ‘ 8‘11‘13‘14‘17‘20‘21‘23‘26‘27‘29‘30‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘

ANT | BEE | BUG

FLEA

FLY

GNAT

GRUB

MITE

MOTH

NIT

Subtree with keys
less than ANT between ANT

and BEE

Subtree with keys

Subtree with keys
greater than WASF

Formally, a B-tree with maximum degree M over some ordered key type is either
> empty, or

P a node with with d — 1 keys and d children, designated as lists keys and
children such that

> [M/2]<d <M,

» children[0] is a B-tree such that all of the keys in that tree are less than keys|[0],

> forall i € [1,d — 1), children][i] is a B-tree such that all of the keys in that tree are
greater than keys[i — 1] and less than keys]/],

» and children[d — 1] is a B-tree such that all of the keys in that tree are greater
than keys[d — 2].

keys values children deg

eight bytes each position four bytes each position eight bytes each position
offset
instrucet O 8 88 96 100 140 144 152 240 248 252
Ly [y oo Ty Toee] eee o]] I E

| ‘ e
node for keys
greater than
WASP
node for keys

between ANT
and BEE
node for keys
less than
ANT

7341

5994 | 6435 | 6888

4587 | 5063 | 5571

3190 | 3622 | 4149

1381 | 1859 | 2276

‘ 470 ‘ 977

‘31 ‘60 ‘86 ‘113‘141 ‘170‘195 ‘259‘228‘261 ‘313‘347‘372‘400‘436‘

‘2 ‘5 ‘7 ‘ 8‘11‘13‘14‘17‘20‘21‘23‘26‘27‘29‘30‘ ‘33‘35‘37‘38‘41‘42‘44‘47‘50‘51‘53 ‘54‘57‘58‘59‘

(sl a]]

[2]5[s f2ia] [20]22]2s] [| [29]at]3a]s6] | [se[40[4s]a7] | [s1]s2]s7[[|

(sl a]]

[2]5[sf2ia] [20]22]2s] [| [29]at]3a][s6] | [se[40[a1]as]47] [s1]s2]s7[[|

NEECE

[20[22[25] | | [2o]s1]as]ae] | [a9]40]41]4s[47] [s1]s2[s7] | |

[2[s] [1]

9

10 (12 113

BEEED

l2]s[[1] fohehs] [| [20]22]2s] [| [20]31]ss[36] | [se[40]a1]as[47] [s1]s2][s7] | |

o[[e[s]

41
lels [[1] hohefis [] [eof2ofes] [] [eo]sr[sefse]] [aelas[ar] [| [s]sels7] | |

[soao] [[]

26

[efs [[[] foheha] [] [eof2efas] [| [esst[ssfse] | [aofao] | [| [a2fasar] [| [si]se[s7] []

hofiz fia | |

[20]22[25] | | [20[st]ss]as] | [sefao] | [| [a2]as[4r] | | [s1]52]57]

Mh —1

= M —1
M-1 M =(M-1 =
M-1) > M = (M=)
keys peri,_/

node sum of
nodes
at each
level
n = Mh—1
Mh = n41

h = logy(n+1)

n = Mh—1
Mh = n41

h = logy(n+1)

logp(n+ 1)

h= Iog%(n—l—l) T 1- logy 2

Cost of a search:

lgM-h = IgM- '3%_%;;;)
lg(n+1)
= |g M lg {\gz

“lgM

_ lg(n+1)
1

lfIg—M

lg M
= |g%/17—1 lg(n+1)
Compare: 1.441g n for AVL trees, 21g n for RB trees.

Let o be the cost of searching at a node (proportional to Ig M) and ¢; be the cost of
reading a node from memory. The the cost of an entire search is

logp(n+ 1)
c+c)———~
(0 +c1) 1—logy 2
Now, consolidate the constants by letting d = 1f(|)o+gc,;2' and we have

dlogp(n+1)

Coming up:

Do BST rotations project (due Wed, Mar 19)—nothing to turn in
Do AVL trees project (due Mon, Mar 24)
Do Traditional RB project (due Fri, Mar 28)

Due Wed, Mar 26 (end of day)—but spread it out
Read Sections 5.(4-6)

Do Exercise 5.13

Take quiz (red-black trees)

Due Mon, Mar 31 (end of day)
Read Section 6.(1&2)

Do Exercises 6.(5-7)

Take quiz

Due Tues, Apr 1 (end of day)
Read Section 6.3

Do Exercises 6.(16, 19, 23, 33)
Take quiz

