
Chapter 5, Binary search trees:

▶ Binary search trees; the balanced BST problem (spring-break eve; finished last
week Monday)

▶ AVL trees (last week Monday and Wednesday)

▶ Traditional red-black trees (last week Friday, finished Monday)

▶ Left-leaning red-black trees (Monday, finishToday)

▶ “Wrap-up” BST (Today)

▶ Begin dynamic programming (Friday)

▶ Test 2 Thursday, Apr 10

Today:

▶ Balanced tree comparisons

▶ Survey of B-trees



5 8 15 2312 25 29 31 32 38 43 49 56 58 63

15 49

8 25 38 58

5 12 23 29 32 43 56 63



21 29

23 27 302 7 11 14 20

135

8 26

17 47

38 54

42 51 58

41 44 50 53 57 5933 37

35

113

141

170

195

228

259 436

400

372

347

281

313

60

31 88



2 5 7 8 11 13 14 17 20 21 23 26 27 29 30

31 60 88 113 141 195170 259 228 281 313 347 372 400 436

33 35 37 38 41 42 44 47 50 51 53 54 57 58 59



1 2 3 4 6 7 8 9 10 1150

1 2 3 4 6 7 8 9 10 1150 12

and BEE

Subtree with keys Subtree with keys

between ANTless than ANT

Subtree with keys

greater than WASP

ANT BEE BUG FLEA FLY NITGNAT GRUB MITE MOTH TICK WASP



Formally, a B-tree with maximum degree M over some ordered key type is either

▶ empty, or
▶ a node with with d − 1 keys and d children, designated as lists keys and

children such that
▶ ⌈M/2⌉ ≤ d ≤ M,
▶ children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
▶ for all i ∈ [1, d − 1), children[i ] is a B-tree such that all of the keys in that tree are

greater than keys[i − 1] and less than keys[i ],
▶ and children[d − 1] is a B-tree such that all of the keys in that tree are greater

than keys[d − 2].



A N T \0

B E E \0

W A S P \0

96 100 140 1440 8 88 152 240 248 252

5 12 33

keys

eight bytes each position

values

four bytes each position

children

eight bytes each position

13

deg

node for keys
less than
ANT

node for keys

between
and BEE

ANT

node for keys

greater than

WASP

offset 

in struct



31 60 88 113 141 195170 259 228 281 313 347 372 400 436

33 35 37 38 41 42 44 47 50 51 53 54 57 58 592 5 7 8 11 13 14 17 20 21 23 26 27 29 30

470 977 1381 1859 2276 3190 3622 4149 4587 5063 5571 5994 6435 6888 7341



2 5 9 12 13

17

20 22 25

26

29 31 33 36

37

39 40 45 47

48

51 52 57



2 5 9 12 13

17

20 22 25

26

29 31 33 36

37

39 40

48

51 52 57474541



17

20 22 25

26

29 31 33 36

37

39 40

48

51 52 57474541

2 5

9

12 1310



12 13102 5

483726179

20 22 25 29 31 33 36 39 40 51 52 57474541



12 13102 5

483726179

51 52 5720 22 25 29 31 33 36

39 40

41

45 4742



12 13102 5 51 52 5745 474239 40

179 41 37 48

20 22 25 29 31 33 36

26



12 13102 5 51 52 5745 474239 40

179 41 37 48

20 22 25 29 31 33 36

26



(M − 1)︸ ︷︷ ︸
keys per
node

h−1∑
i=0

M i

︸ ︷︷ ︸
sum of
nodes
at each
level

= (M − 1)
Mh − 1

M − 1
= Mh − 1

n = Mh − 1

Mh = n + 1

h = logM(n + 1)



n = Mh − 1

Mh = n + 1

h = logM(n + 1)

h = logM
2
(n + 1) =

logM(n + 1)

1− logM 2



Cost of a search:

lgM · h = lgM · logM(n+1)
1−logM 2

= lgM

lg(n+1)
lgM

1− lg 2
lgM

= lg(n+1)

1− 1
lgM

= lgM
lgM−1 lg(n + 1)

Compare: 1.44 lg n for AVL trees, 2 lg n for RB trees.



Let c0 be the cost of searching at a node (proportional to lgM) and c1 be the cost of
reading a node from memory. The the cost of an entire search is

(c0 + c1)
logM(n + 1)

1− logM 2

Now, consolidate the constants by letting d = c0+c1
1−logM 2 , and we have

d logM(n + 1)



Coming up:

Do BST rotations project (due Wed, Mar 19)—nothing to turn in
Do AVL trees project (due Mon, Mar 24)
Do Traditional RB project (due Fri, Mar 28)

Due Wed, Mar 26 (end of day)—but spread it out
Read Sections 5.(4-6)
Do Exercise 5.13
Take quiz (red-black trees)

Due Mon, Mar 31 (end of day)
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take quiz

Due Tues, Apr 1 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz


