Neural nets unit:

- General introduction (last week Wednesday)
- Trying out neural nets (last week Friday, in lab)
- How to train your perceptron (Monday)
- The feed-forward and back-propagation algorithms (Today)
- Deep learning: CNNs (Friday and next week Monday)
- Deep learning in practice (next week Wednesday, in lab)

Last time and today:

- Implementing a perceptron
- Training a perceptron
- ► Implementing an MLP (the feed-forward algorithm)
- Training an MLP (the back-propagation algorithm)

A **perceptron** is a function $\mathbb{R}^D \to \mathbb{R}$ defined as

$$p(\mathbf{x}) = h(\mathbf{\theta} \cdot \mathbf{x} + b) = h\left(b + \sum_{i=0}^{D-1} \theta_i x_i\right)$$

where

- \triangleright θ is the vector of weights
- b is the bias term
- h is the activation function

Let t be the target values, that is t_n is the target value for data point x_n . We're using t instead of y so that y can be used for the output unit of an MLP. Let η be the learning rate.

For a single perceptron with weights θ , the weights are updated based on data point x with target t by the perceptron (training) rule:

$$\boldsymbol{\theta}^{\mathsf{new}} = \boldsymbol{\theta}^{\mathsf{old}} + \eta \underbrace{(t - p(\boldsymbol{x}))}_{\mathsf{error}} \boldsymbol{x}$$

Or, applied to a single feature/dimension i,

$$\theta_i^{\text{new}} = \theta_i^{\text{old}} + \eta \underbrace{(t - p(\mathbf{x}))}_{\text{error}} x_i$$

Why multiply the error by x?

"Neuron" perspective on the perceptron rule.
$$\theta_i^{\text{new}} = \theta_i^{\text{old}} + \eta \underbrace{(t - p(\mathbf{x}))}_{\text{error}} x_i$$

Target value $t \in \{0,1\}$ indicates whether the neuron should fire, computed value p(x) indicates whether the neuron does fire. Interpret (t - p(x)):

- ▶ 0 means the perceptron was correct
- ▶ -1 means the perceptron fired when it shouldn't have fired. (Threshold too low.)
 - ightharpoonup Decrease θ_i if x_i is positive
 - ▶ Increase θ_i if x_i is negative
- ▶ 1 means the perceptron didn't fire when it should have fired. (Threshold too high.)
 - ▶ Increase θ_i if x_i is positive
 - ightharpoonup Decrease θ_i if x_i is negative

The intensity of the signal (magnitude of x_i) affects how much the weight is changed.

"Loss" perspective on the perceptron rule. $\theta_i^{\text{new}} = \theta_i^{\text{old}} + \eta \underbrace{(t - p(x))}_{\text{error}} x_i$

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2}(t - p(\boldsymbol{x}))^{2}$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{\partial}{\partial \theta_{i}} \frac{1}{2}(t - p(\boldsymbol{x}))^{2}$$

$$= (t - p(\boldsymbol{x})) \frac{\partial}{\partial \theta_{i}}(t - p(\boldsymbol{x}))$$

$$= -(t - p(\boldsymbol{x})) \frac{\partial}{\partial \theta_{i}}(\theta_{0}x_{0} + \cdots \theta_{D}x_{D})$$

$$= -(t - p(\boldsymbol{x}))x_{i}$$

Wait, what about the negative sign?

The **feed-forward algorithm**:

Given input x, let $z^{(m)}$ be (the output of) the mth hidden layer.

Let
$$\mathbf{z}^{(0)} = \mathbf{x}$$

For each $m \in [1, M]$ (for each hidden layer)
For each hidden unit $z_k^{(m)}$ in layer $\mathbf{z}^{(m)}$
Apply $z_k^{(m)}$ to $\mathbf{z}^{(m)}$
Apply output unit y to $\mathbf{z}^{(M)}$

The output of the feed-forward algorithm (distinct from the output of the MLP) is the results of all the units of all the layers.

M is the number of hidden units. j and ℓ range over hidden units, as in z_j . We are assuming a single output unit y.

The weights in the output unit are θ_{yj} , that is, the *j*th weight (corresponding to the hidden unit z_j) in output unit y.

The weights of the hidden units are θ_{ji} , that is, the *i*the weight (corresponding to the input component x_i) in hidden unit z_j .

The sum of squares error, as a function of the parameters (weights) heta is

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{n=0}^{N-1} (y(\boldsymbol{x}_n) - t_n)^2$$

Or, applied to a single data point x, t

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2}(y(\boldsymbol{x}) - t)^2$$

To simplify the notation, let y stand in for the result of output unit y when the MLP is applied to x.

Let θ_y be the weight vector of output unit y. Let j index into θ_y . Let σ (logistic function) be the activation function.

Finding the partial derivative with respect to θ_{yj} .

$$\mathcal{L}(\theta) = \frac{1}{2}(y-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{yj}} = \frac{\partial}{\partial \theta_{yj}} \left(\frac{1}{2}(y-t)^{2}\right) = (y-t)\frac{\partial}{\partial \theta_{yj}}(y-t) = (y-t)\frac{\partial}{\partial \theta_{yj}}y$$

$$= (y-t)\frac{\partial}{\partial \theta_{yj}} \underbrace{\sigma\left(\sum_{\ell=0}^{M}\theta_{y\ell}z_{\ell}\right)}_{y}$$

$$= (y-t)\underbrace{\underbrace{y\left(1-y\right)}_{from \ derivative \ of \ \sigma}}_{from \ derivative \ of \ \sigma} \left(\sum_{\ell=0}^{M}\theta_{y\ell}z_{\ell}\right) = (y-t)y\left(1-y\right)z_{j}$$

Let z_j be the a hidden unit, and let θ_j be the weight vector of that unit. Let θ_{ji} be the *i*th weight of the *j*th hidden unit.

Finding the partial derivative with respect to θ_{ii} :

$$\frac{\partial \mathcal{L}}{\partial \theta_{ji}} = (y - t) \frac{\partial}{\partial \theta_{ji}} y = (y - t) y (1 - y) \frac{\partial}{\partial \theta_{ji}} \left(\sum_{\ell=0}^{M} \theta_{y\ell} z_{\ell} \right)
= (y - t) y (1 - y) \frac{\partial}{\partial \theta_{ji}} (\theta_{yj} \mathbf{z}_{j})
= (y - t) y (1 - y) \theta_{yj} \frac{\partial}{\partial \theta_{ji}} \mathbf{z}_{j}
= (y - t) y (1 - y) \theta_{yj} \frac{\partial}{\partial \theta_{ji}} \sigma \left(\sum_{i=0}^{D} \theta_{ji} x_{i} \right)
= (y - t) y (1 - y) \theta_{yj} \underbrace{z_{j} (1 - z_{j})}_{\text{from derivative of } \sigma} \frac{\partial}{\partial \theta_{ji}} \left(\sum_{i=0}^{D} \theta_{ji} x_{i} \right)
= (y - t) y (1 - y) \theta_{yj} z_{j} (1 - z_{j}) x_{i}$$

Coming up:

Due Wed, Apr 9:

Read and respond to two articles about bias in algorithms (See Canvas)

Due Fri, Apr 11: Read excerpt from Geron introducing convolutional neural nets

(See Canvas)

Due Wed, Apr 16:

Implement perceptron training, feed-forward, and back-propagation (You know enough to do the first part)

Sometime between Mar 31 and Apr 17:

Make an office-hours appointment for project check-in (Originally the deadline was Apr 11)