Neural nets unit:
» General introduction (last week Wednesday)
Trying out neural nets (last week Friday, in lab)
How to train your perceptron (Monday)

>
>
» The feed-forward and back-propagation algorithms (Today)
» Deep learning: CNNs (Friday and next week Monday)

>

Deep learning in practice (next week Wednesday, in lab)

Last time and today:

» Implementing a perceptron

» Training a perceptron

» Implementing an MLP (the feed-forward algorithm)
» Training an MLP (the back-propagation algorithm)

A perceptron is a function RP? — R defined as

D—-1
p(x) = h(6 -x+b)=h <b+ Z&m)

i=0
where
» @ is the vector of weights
P b is the bias term

» h is the activation function

Let t be the target values, that is t, is the target value for data point x,. We're using
t instead of y so that y can be used for the output unit of an MLP. Let n be the
learning rate.

For a single perceptron with weights @, the weights are updated based on data point x
with target t by the perceptron (training) rule:

gnew — g°ld) (£ — p(x)) x
N——
error
Or, applied to a single feature/dimension i,

orew — g0ld 1) (£ — p(x)) x;
———

error

Why multiply the error by x?

“Neuron” perspective on the perceptron rule. AW = ¢°ld |y, (+ — p(x)) x;
———

error

Target value t € {0, 1} indicates whether the neuron should fire, computed value p(x)
indicates whether the neuron does fire. Interpret (t — p(x)):

» 0 means the perceptron was correct

» -1 means the perceptron fired when it shouldn't have fired. (Threshold too low.)
» Decrease 0; if x; is positive
» Increase 0; if x; is negative

» 1 means the perceptron didn't fire when it should have fired. (Threshold too
high.)

» Increase 0; if x; is positive
P Decrease 0; if x; is negative

The intensity of the signal (magnitude of x;) affects how much the weight is changed.

“Loss” perspective on the perceptron rule. 9V = H?Id +n(t — p(x)) x
—_——

error

Wait, what about the negative sign?

The feed-forward algorithm:
Given input x, let z(™ be (the output of) the mth hidden layer.

Let 20 = x
For each m € [1, M] (for each hidden layer)

For each hidden unit z,Em) in layer z(m)

Apply Z,Em) to z(m — 1)

Apply output unit y to z{M)

The output of the feed-forward algorithm (distinct from the output of the MLP) is the
results of all the units of all the layers.

M is the number of hidden units. j and £ range over hidden units, as in z;. We are
assuming a single output unit y.

The weights in the output unit are 6,;, that is, the jth weight (corresponding to the
hidden unit z;) in output unit y.

The weights of the hidden units are 6j;, that is, the ithe weight (corresponding to the
input component x;) in hidden unit z;.

The sum of squares error, as a function of the parameters (weights) 0 is

()/(xn) - tn)z

To simplify the notation, let y stand in for the result of output unit y when the MLP is
applied to x.

Let 6, be the weight vector of output unit y. Let j index into @,. Let o (logistic
function) be the activation function.

Finding the partial derivative with respect to 0,,.

o) = y—1p

aL 9 (1 2y _ d _ d
%, = Wyj(ﬁ(y—t))-(y—t)aTyj(y—t)—(y_t)aTyjy
M
= (y—t)a%yj a<29y42£>
=0
y

= (y-1 y(l-vy) %(Zﬁie@ym):(y—t)y(l—y)%

from derivative of o

Let z; be the a hidden unit, and let ; be the weight vector of that unit. Let 6;; be the
ith weight of the jth hidden unit.
Finding the partial derivative with respect to 0;:

o= -0y =00y (- (Sl tez)
= (v —t)y (1= y)g5(6y2))
= (y=1)y (1-y)byz52
lé) D
= (r=1)y @ -y)byzg0 (Zi:o ej'Xi>

= -0y (@-9t; z(0-2) 5 (Z;'io 91in)

from derivative of o

= (y-t)y(Ql-y)b,;z (1-z)x

Coming up:

Due Wed, Apr 9:
Read and respond to two articles about bias in algorithms
(See Canvas)

Due Fri, Apr 11: Read excerpt from Geron introducing convolutional neural
nets
(See Canvas)

Due Wed, Apr 16:
Implement perceptron training, feed-forward, and back-propagation
(You know enough to do the first part)

Sometime between Mar 31 and Apr 17:
Make an office-hours appointment for project check-in
(Originally the deadline was Apr 11)

