
Neural nets unit:

▶ General introduction (last week Wednesday)

▶ Trying out neural nets (last week Friday, in lab)

▶ How to train your perceptron (Monday)

▶ The feed-forward and back-propagation algorithms (Today)

▶ Deep learning: CNNs (Friday and next week Monday)

▶ Deep learning in practice (next week Wednesday, in lab)

Last time and today:

▶ Implementing a perceptron

▶ Training a perceptron

▶ Implementing an MLP (the feed-forward algorithm)

▶ Training an MLP (the back-propagation algorithm)



A perceptron is a function RD → R defined as

p(xxx) = h(θθθ · xxx + b) = h

(
b +

D−1∑
i=0

θixi

)
where

▶ θθθ is the vector of weights

▶ b is the bias term

▶ h is the activation function



Let ttt be the target values, that is tn is the target value for data point xxxn. We’re using
t instead of y so that y can be used for the output unit of an MLP. Let η be the
learning rate.

For a single perceptron with weights θθθ, the weights are updated based on data point xxx
with target t by the perceptron (training) rule:

θθθnew = θθθold + η (t − p(xxx))︸ ︷︷ ︸
error

xxx

Or, applied to a single feature/dimension i ,

θnewi = θoldi + η (t − p(xxx))︸ ︷︷ ︸
error

xi

Why multiply the error by x?



“Neuron” perspective on the perceptron rule. θnewi = θoldi + η (t − p(xxx))︸ ︷︷ ︸
error

xi

Target value t ∈ {0, 1} indicates whether the neuron should fire, computed value p(xxx)
indicates whether the neuron does fire. Interpret (t − p(xxx)):

▶ 0 means the perceptron was correct

▶ -1 means the perceptron fired when it shouldn’t have fired. (Threshold too low.)
▶ Decrease θi if xi is positive
▶ Increase θi if xi is negative

▶ 1 means the perceptron didn’t fire when it should have fired. (Threshold too
high.)
▶ Increase θi if xi is positive
▶ Decrease θi if xi is negative

The intensity of the signal (magnitude of xi ) affects how much the weight is changed.



“Loss” perspective on the perceptron rule. θnewi = θoldi + η (t − p(xxx))︸ ︷︷ ︸
error

xi

L(θθθ) = 1
2(t − p(xxx))2

∂L
∂θi

= ∂
∂θi

1
2(t − p(xxx))2

= (t − p(xxx)) ∂
∂θi

(t − p(xxx))

= −(t − p(xxx)) ∂
∂θi

(θ0x0 + · · · θDxD)

= −(t − p(xxx))xi

Wait, what about the negative sign?



The feed-forward algorithm:
Given input x , let zzz(m) be (the output of) the mth hidden layer.

Let zzz(0) = xxx
For each m ∈ [1,M] (for each hidden layer)

For each hidden unit z
(m)
k in layer zzz(m)

Apply z
(m)
k to zzz(m − 1)

Apply output unit y to zzz(M)

The output of the feed-forward algorithm (distinct from the output of the MLP) is the
results of all the units of all the layers.



M is the number of hidden units. j and ℓ range over hidden units, as in zj . We are
assuming a single output unit y .

The weights in the output unit are θyj , that is, the jth weight (corresponding to the
hidden unit zj) in output unit y .

The weights of the hidden units are θji , that is, the ithe weight (corresponding to the
input component xi ) in hidden unit zj .

The sum of squares error, as a function of the parameters (weights) θ is

L(θ) = 1

2

N−1∑
n=0

(y(xn)− tn)
2

Or, applied to a single data point xxx , t

L(θ) = 1

2
(y(xxx)− t)2



To simplify the notation, let y stand in for the result of output unit y when the MLP is
applied to xxx .
Let θθθy be the weight vector of output unit y . Let j index into θθθy . Let σ (logistic
function) be the activation function.
Finding the partial derivative with respect to θyj .

L(θ) = 1
2(y − t)2

∂L
∂θyj

= ∂
∂θyj

(
1
2(y − t)2

)
= (y − t) ∂

∂θyj
(y − t) = (y − t) ∂

∂θyj
y

= (y − t) ∂
∂θyj

σ

(
M∑
ℓ=0

θyℓzℓ

)
︸ ︷︷ ︸

y

= (y − t) y (1− y)︸ ︷︷ ︸
from derivative of σ

∂
∂θyj

(∑M
ℓ=0 θyℓzℓ

)
= (y − t) y (1− y) zj



Let zzz j be the a hidden unit, and let θθθj be the weight vector of that unit. Let θji be the
ith weight of the jth hidden unit.
Finding the partial derivative with respect to θji :

∂L
∂θji

= (y − t) ∂
∂θji

y = (y − t) y (1− y) ∂
∂θji

(∑M
ℓ=0 θyℓzℓ

)
= (y − t) y (1− y) ∂

∂θji
(θyjzzz j)

= (y − t) y (1− y) θyj
∂

∂θji
zzz j

= (y − t) y (1− y) θyj
∂

∂θji
σ
(∑D

i=0 θjixi

)
= (y − t) y (1− y) θyj zj (1− zj)︸ ︷︷ ︸

from derivative of σ

∂
∂θji

(∑D
i=0 θjixi

)

= (y − t) y (1− y) θyj zj (1− zj) xi



Coming up:

Due Wed, Apr 9:
Read and respond to two articles about bias in algorithms
(See Canvas)

Due Fri, Apr 11: Read excerpt from Geron introducing convolutional neural
nets
(See Canvas)

Due Wed, Apr 16:
Implement perceptron training, feed-forward, and back-propagation
(You know enough to do the first part)

Sometime between Mar 31 and Apr 17:
Make an office-hours appointment for project check-in
(Originally the deadline was Apr 11)


