
Gaussian mixture models unit:

▶ Everything you need to know about probability (last week Friday)

▶ Lab activity: From histograms to Gaussians (Wednesday)

▶ Mixture models (today)

▶ Expectation-maximization (next week Monday)

Today and next time:

▶ The density estimation task

▶ Gaussian mixture models

▶ The general idea of Expectation-Maximization

▶ The algorithm



Lessons of this unit

▶ Gaussian models as representative example of density estimation.

▶ Mixture models

▶ Unsupervised learning in data with latent variables

▶ Expectation-maximization as an iterative algorithm in the absence of a
closed-form solution



Gaussian model family:

p(x) = N (x | µ, σ) = 1√
2πσ2

e
−(x−µ)2

2σ2

Multivariate Gaussian model family:

p(x) = N (x | µ,Σ) =
1√

(2π)D |Σ|
e

−(x−µ)TΣ−1(x−µ)
2

Gaussian mixture model family:

p(x) or p(x ,π,µ,σ) =
K−1∑
i=0

πiN (x | µi , σi )



Given (scalar) observations x generated by a process suspected of being comprised of
K subprocesses, each with a Gaussian distribution, train a model to predict the
probability of observation value x , using the following model family:

p(x) or p(x ,π,µ,σ) =
K−1∑
i=0

πiN (x | µi , σi )

where πi is the probability of an observation having come from subprocess i and µi

and σi are the mean and standard deviation, respectively, of subprocess i , and N is the
probability density function for the Gaussian distribution,

p(x) = N (x | µ, σ) = 1√
2πσ2

e
−(x−µ)2

2σ2

That is, find π, µ, and σ to maximize the likelihood of the training data under this
model.



Coming up:

Due Fri, Feb 21:
Submit “Dataset” checkpoint for term project

Recommended sometime:
Read or skim chapter on GMM/EM from Deisenroth et al.
(See Canvas)

Due Tues, Feb 25:
Take GMM quiz

Due Fri, Feb 28:
Do GMM/EM programming assignment

Due Wed, Mar 5:
Read and respond to Urbina et al, “Dual use of AI-powered drug discovery”
(See Canvas)

Also coming sometime. . .
Textbook and supplemental reading about SVMs



Assume we have N data points, and let n index into the data.
In the expectation step, we calculate responsibility rn,i , a measure of the ith
Gaussian’s contribution to the probability of datapoint xn:

rn,i =
πiN (xn | µi , σi )∑K−1

j=0 πjN (xn | µj , σj)



In the maximization step, we recalculate µ and σ based on the expected values for
rn,i . Ni is the sum of the contributions of model i to all data points, a proxy for how
many data points come from model i :

Ni =
N−1∑
n=0

rn,i

Recalculating µ, σ, and πi :

µnewi =

N−1∑
n=0

rn,ixn

Ni
σnewi =

√√√√√N−1∑
n=0

rn,i
(
xn − µnewi

)2
Ni

πnewi = Ni
N



We measure the how well the current model fits the data by computing the log
likelihood :

N−1∑
n=0

lg
K−1∑
i=0

πiN (xn | µi , σi )

For initial π, assume all processes are equally likely,

πi =
1

K

For initial µ, either spread the means evenly throughout the training data range,

µi = xmin +
xmax − xmin

k + 1
· (i + 1)

or use random values from the training data range.
For initial σ, use

σi =
xmax − xmin

k2

.


