The nature of data unit:

- Objects and vectors (Wednesday)
- K nearest neighbors classification (today)
- ► (Start linear regression next week)

Today:

- Leftover: Meet the data; features as functions
- Concept
- Algorithm and analysis
- Things to notice
- Distance metrics and norms

Let X be the training data of N D-dimensional observations.

Let k be a natrual number.

Given a new datapoint \vec{x} , assign \vec{x} the same class as the majority of k training datapoints that are closest to \vec{x} in the vector space.

Intance-based methods can also use more complex, symbolic representations for instances.... Case-based reasoning has been applied to tasks such as storing and reusing past experience at a help desk, reasoning about about legal cases by referring to previous cases, and solving complex scheduling problems by reusing relevant portions of previously solved problems.

Mitchell, Machine Learning, p 231.

A metric or distance function between two vectors is a function $d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ with the properties that for any vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^D$,

$$b d(x,z) \le d(x,y) + d(y,z)$$
 (the triangle inequality)

$$lackbox{d}(x,y)=0 \text{ iff } x=y$$
 (the identity of indiscernibles)

A *norm* is a fuction $||\cdot||: \mathbb{R}^D \to \mathbb{R}$ with the properties that for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ and any scalar $\lambda \in \mathbb{R}$,

$$||\lambda \mathbf{x}|| = |\lambda|||\mathbf{x}||$$
 (absolute homogeneity)

$$||x + y|| \le ||x|| + ||y||$$
 (the triangle inequality)

$$||x|| \ge 0$$
 and, moreover, $||x|| = 0$ iff $x = 0$ (positive definiteness)

Any norm induces a metric with

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$$

"Notice all the computations, theoretical scribblings, and lab equipment, Norm. . . . Yes, curiosity killed these cats,"

Euclidean distance (L_2 norm):

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_0 - y_0)^2 + (x_1 - y_1)^2}$$
 $d(\mathbf{x}, \mathbf{y}) = \sqrt{(\sum_{i=0}^{D-1} (x_i - y_i)^2)}$

Manhattan or city-block distance (L_1 norm):

$$d(\mathbf{x}, \mathbf{y}) = |x_0 - y_0| + |x_1 - y_1|$$
 $d(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{D-1} |x_i - y_i|$

Minkowski distance (L_p norm):

$$d(\mathbf{x}, \mathbf{y}) = (|x_0 - y_0|^p + |x_1 - y_1|^p)^{\frac{1}{p}}$$
 $d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=0}^{D-1} |x_i - y_i|^p\right)^{\frac{1}{p}}$

Mahalanobis distance: Let **S** be the covariance matrix of the entire dataset **X**, and so S^{-1} is the inverse of the covariance matrix.

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^{\mathsf{T}} \mathbf{S}^{-1} (\mathbf{x} - \mathbf{y})}$$

Compare with Euclidean distance:

$$d(\mathbf{x},\mathbf{y}) = \sqrt{\left(\sum_{i=0}^{D-1} (x_i - y_i)^2\right)} = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Canberra distance:

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{D-1} \frac{|x_i - y_i|}{|x_i| + |y_i|}$$

Compare with Manhattan distance:

$$d(\mathbf{x}, \mathbf{y}) = |x_0 - y_0| + |x_1 - y_1|$$
 $d(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{D-1} |x_i - y_i|$

Coming up:

Due Fri, Jan 24:

Do numpy programming assignment Take the KNN quiz

Due Wed, Jan 29:

Read and respond to article about the Boston Housing Dataset (Find pdf on Canvas.)

Due Thurs, Jan 30:

Read the textbook from Chapters 1 and 5 (see Canvas for specific sections)

Due Fri, Jan 31:

Do KNN programming assignment

Due Mon, Feb 3:

Propose project topic