
Linear regression unit:

▶ Simple linear regression with ordinary least squares (today)

▶ Lab activity: Linear regression (Wednesday)

▶ Deriving a closed form solution (Friday)

▶ Newton’s method and gradient descent (next week Monday)

▶ Training linear regression using gradient descent (next week Wednesday)

Today:

▶ Foundational ideas
▶ Problem statement for linear regression
▶ Error, loss, and risk
▶ Partial derivatives and gradients

▶ Deriving ordinary least squares for simple linear regression

▶ Variations: Multiple regression and regularization



Which of the following is not a hyperparameter of a k nearest neighbor classifier?

The number of neighbors The distance metric The curse of dimensionality

Which of the following is not true about k nearest neighbors classification?

It is non-parametric The classifier stores all the training data

It works very well on many applications The curse of dimensionality doesn’t apply

Which if the following is not a vector distance metric?

Euclidean Manhattan Mahalanobis

Canberra Curse of dimensionality



Typical sequence for a topic in this course:

▶ Problem statement and general concepts

▶ Concrete illustration and applications in lab

▶ Deep dive into the math

▶ Algorithmic details

Plan for this topics:

▶ Simple linear regression with ordinary least squares (today)

▶ Lab activity: Linear regression (Wednesday)

▶ Deriving a closed form solution (Friday)

▶ Newton’s method and gradient descent (next week Monday)

▶ Training linear regression using gradient descent (next week Wednesday)



Linear regression gives us the opportunity to introduce larger ideas in machine learning:

▶ Training as finding parameters/weights

▶ Error vs loss (and cost and risk)

▶ Finding parameter using closed forms, as opposed to

▶ Finding parameters using iterative methods, especially the gradient descent
algorithm

General form of the regression problem:

Given data X (N observations in D dimensions) and N target values as y⃗ , find
a function for predicting the values of new data points.



▶ A cost function is a variable, formula, or function to be minimized in an
optimization problem.

▶ The error of a model is the difference between the correct value and the
computed value.

▶ A loss function is a measure of how well the model performs, usually applied to
training data. Loss is an interpretation of error. Loss usually is treated as a
function of the model.

▶ Risk is a measurement of how well the model performs on all possible data. Risk
is the expected value of the loss function applied to arbitrary data, not just
training data. The loss function applied to the training data is an experimental
estimate of risk, that is, empirical risk.

▶ The empirical risk minimization (ERM) framework is the general strategy of
finding a model that minimizes loss on the training data.



Polynomial regression:

y(x) = θ0 + θ1x + θ2x
2 + · · · θDxD

Multiple regression:

y(x) = θ0 + θ1x1 + θ2x2 + · · ·+ θDxD = θ0 + θTx

If we extend each observation so that it has 1 in position 0, that is
x = [1, x1, x2, . . . xD ] (so each observation acts like a vector of length D + 1), and
interpret θ as [θ0, θ1, θ2, . . . θD ], then the model family is

y(x) = θTx

Most general form, linear regression on arbitrary basis functions:

y(x) = θ0 + θ1ϕ1(x) + · · ·ϕD(x)



Loss function for ridge regularization (ridge regression):

Lridge(θ) = ||yT − θTX||2︸ ︷︷ ︸
original loss

+ α||θ||2︸ ︷︷ ︸
regularizer

Loss function for LASSO regularization

LLASSO(θ) = ||yT − θTX||2 + α

D∑
i=1

|θi | = ||yT − θTX||2 + α||θ||1



Coming up:

Due Wed, Jan 29:
Read and respond to article about the Boston Housing Dataset
(Find pdf on Canvas.)

Due Thurs, Jan 30:
Read the textbook from Chapters 1 and 5 (see Canvas for specific sections)

Due Fri, Jan 31:
Do KNN programming assignment

Due Mon, Feb 3:
Propose project topic


