Support vector machines unit:

» What PCA is (last week Monday)
» Applications of PCA (last week Wednesday, in lab)
» The math of PCA (last week Friday)

» PCA algorithms (Today)

» (Begin neural nets on Wednesday)

Today:

» Finish the math of PCA, maximum-variance view
» Point of comparison: minimum-information-loss view

» Practical parts for implementation

The most important source for all of this was Deisenroth et al, Mathematics for Machine Learning,
2020, 286-293.

(Available on Canvas)



Let x =E[x] = & S™N | Xn be the mean of the data. We center the data so that it has
mean 0: x,¢ = x, — X. From this point on, we assume X has been centered, and so
E[x] = 0.

Vo
Let W = : € RM*D be a set of orthonormal basis vectors.

VM-1

Let z, = Wx,, be the projection of x, in the vector space defined by these basis vectors.

We can project z, back ito the original space with %, = W7 z,.



Let vo € RP be the zeroth (“first”) principal component (which we want to find).
Let z0., = v Tx, be the zeroth coordinate in the projection of xp.

Let zgp be a random variable modeling the value of the zeroth coordinate. Assume data
is centered, that is, E[z] = 0.

Let C= 5 Zn 0 x,,x,,T be the data covariance matrix. Then

Var[zg] = § Z (zo n— 0)2
= W Z (VO Xn)2
= % Zrlyz_ol(VO TXanTV0)2

N-1
= V0T<NZ 0x,,x,,T>v0

= w'Cw which we want to maximize subject to ||v||? = 1



Optimization problem as a Lagrangian:

,C(Vo, )\0) = vwCw + )\0(1 — VoTVo)

oL _ T oL _ T _ T _
B>y 1—Vo Vo o 2V0 C 2)\0V0 =0

VoTC = )\0V0T

Plug that into our formula for the variance:

Var[z)] = w Cw

= dw'w = Xo



To find the next principal component, transform the data by removing the effect of the
principal component vy:

X1 =X—ww' X

...compute the corresponding data covariance matrix Cy, find the eigenvector with
greatest eigenvalue. As a loop to find M principal components v, ... Vp—1:

C = the data covariance matrix of X
vo = the eigenvector of C with greatest eigenvalue
for me [1, M) :
W, = Z,f:()l viviT  (projection matrix into subspace)
Xm=X—Wp,X
C,» = the data covariance matrix of X,
Vm = the eigenvector of C,,, with greatest eigenvalue

Theorem 1 (Invariant)

For all m, every eigenvector of C is an eigenvector of C,.



For all m, every eigenvector of C is an eigenvector of Cp,.
Proof. Suppose vj is an eigenvector of C with eigenvalue \j, that is, Cv; = A;v;. Then
CnV¥i = AXmXm'V;
= H(X=WnX)(X - WnX)Tv; do FOIL with £XXT =C
= (C—CWp, - W,C+W,CW,,)v;
Cyi =\ if j > m
Cvi —Cyv; —Cvj +Cyv;j=0 ifj<m
In the j > m case, vj is orthogonal to all the vectors in Wp,, so Wy,v; = 0.

In the j < m case, v; is a basis vector of the subspace into which Wy, projects, so
Wpnyv; = v;. O



To compute the principal components:
Given data and M (number of desired components),
Center the data (and store the mean X)
Compute the covariance matrix
Compute the eigenvectors and corresponding eigenvalues
Sort the eigenvectors by eigenvalues
Return the M eigenvectors with greatest eigenvalues

To transform a data point using principal components:

Given data point x and principal components v, ... vpm—_1,
Shift the data point based on the centering, X = x — X
Compute the dot products of X and each principal component
Assemble the results as a new vector, and return it



Coming up:

Due Fri, Mar 28:
Textbook reading from Chapter 10 (see Canvas)

Due Mon, Mar 31:
Take PCA quiz

Due Fri, Apr 4:
Implement PCA

Due Wed, Apr 9:
Read and respond to two articles about bias in algorithms
(See Canvas)

Sometime between Mar 31 and Apr 17:
Make an office-hours appointment for project check-in
(Originally the deadline was Apr 11)



