Support vector machines unit:

» Linear programming (last week Wednesday)
» SVM concepts (last week Friday)
» Lab: SVM applications (Monday)
» The math of SVMs (Wednesday)
» SVM algorithms (today)

Today:

» Summary of hard-margin version, with algorithm
» Quadratic programming and QP solver library

» Soft-margin version

» Kernelized version

> Put it all together in an algorithm

The most important source for all of this was Stephen Marsland, Machine Learning: An Algorithmic
Perspective, 2015, pg 179-183.



Given training data X,y, where y, € {—1,+1}, find w, b, and r, specifically

maximize r
subject to the constraints ¥ Xn, yn, Yn(W Xy +b) > r

lw|| =1
r>20

Or, equivalently
. . - 1 2
minimize 5 ||w||
subject to the constraints ¥ Xn, yn, Yn(W Xy +b) > 1

alternately written as ¥V X, yn, 1 — yo(w X, +b) >0



programing
problem for the SYM
(Section 125).

hard margin SVM,

viteling e
e 3

a2 Classification with Support Vector Machines
Combining the margin maximization with the fact that examples need 1o be o
the correct side of the hyperplane (based on their labels) gives us
1
max —
e Tl (12.16)

subject 10 ya((w,2q) +6) 21 forall n

1217,
Instead of maximizing the reciprocal of the norm as in (12.16), we ofien mini.
mize the squared norm. We also often include a constant } that does not affec;
the optimal w, b but yields a tidier form when we compute the gradicni, Then
our objective becomes
I P

win g el (12.18)
subject 10 yo((w, ) +5) 21 forall n=

N, (12.19)
Equation (12.18) is known as the hard margin SVM. The reason for the ex-
pression “hard" is because the preceding formulation does not allow for any
violations of the margin condition. We will see in Section 12.2.4 that this “hard”
condition can be relaxed to accommodate violations if the data is not linearly
separable.

12.2.3 Why We Can Set the Margin to 1

In Section 12.2.1, we argued that we would like to maximize some value 7,
which represents the distance of the closest example to the hyperplane. In Sec-
tion 12.22, we scaled the data such that the closest example is of distance 1 to

the hyperplane-Ta this scction, we relate the two derivations and show that they
are equivalent.

Theorem 12.1. Marimizing the margin r, where we consider normalized
weighis as in (12.10),

max
whr o
manin
subjectto yn ((w,z,) +b) > r, Jwl=1, r>o0, 1229
) g normaliation
4 equivalent 1o scaling the data, such that the margin is unity:
I
o gl
_
maryin (12.21)
subject to

Ynl(w, ) +0) > 1.
Pl
g

Proof C e

P n.w;f.’.'vd."‘ 12.20).Since the square is a srictly monotonic transformation
abiciive Sime . 2meNS: the maximu stays the same if we consider 12 i the
Vetor ' th 0] = 1, we can reparametrize the equation with a new weizht

8 not normalized by explicitly using 7. We obtain

12.2 Primal Support Vector Machine

343
max r?
fiid
subject to o (1222)
” ”"<<uw'n"">“’)>“ >0

Equation (12.22) explicitly states that the distance r is positive. Therefore, we
can divide the first constraint by r, which yields :

max r?
wibr

. w' b (12.23)
subject 0 yn W.:n + ; 21,
~

renaming the parameters (o w” and b". Since w"
gives

o1 reamanging for 1

w"ll = =

1
r

3 w' 1
Twir wil =+ (1229

By substituting this result into (12.23), we obtain
1
o (12.25)
subject 1o yn ((w",zp) +b") > 1.
The final step is to observe that maximizing iz yields the same solution as
minimizing } [[w” %, which concludes the proof of Theorem 12.1. o

12.2.4 Soft Margin SVM: Geometric View

In the case where data is not lincarly separable, we may wish to allow s:n'h\t
examples to fall within the margin region, or even (0 be on the wrong side of the
hyperplanc as illustrated in Figure 12.6

(o) Nonlinearly separable 4312

(a) Linearly separable data, with  large
margin

Note thatr > 0
because we assumed
linear separabiliy.
and hence there i no
issue 1 divide by .

Figure 126 (21
Linearly sepanble
and (b) nonlnearly
separable d3a




The Lagrangian of the hard-margin version is

L(w, b, ) |WH2+ Z/\ — yo(wTx, + b))

Take the gradient with respect to w and b, set to 0 or 0

Vwl = w—3N1 N yx, Vel = =S N yn
0 = w- ZN 1>\n nXn 0 = ZN 1)‘”y"
wx = Z,’Y;Ol AnYnXn Wait, how does this help us find bx?

..where wx and bx are the optimal weights and bias.



Wk = Z,’)’;OI AnYnXn = ...ZLV;OI AnYnXni - and Z,’,Vgol Anyn = 0.

Theorem 3.4.3 in Han Veiga and Ged tells us that with wx, bx, and Ax,
Y Xny ¥Yn, An(l— yn(wa,, +b))=0

...which implies A,, = 0 for all non-support vectors x,

Substitute wx and bx into the Lagrangian to make it a function just of A.

N-1
D) = L(wxbx,A) = Lwx|?+ Z_(:) An(1 = yo(ws"x, + bx))
dual filled-in -
Simplify this based on results above into a quadratic program involving only X, y, and
A with constraints E,,NZ_OI Anyn = 0.



A quadratic programming problem (or a quadratic program) can be stated as, minimize

%XTPX—FC]TX
subject to

Gx < h

Ax = b

In this formula, let n be the number of variables, m be the number of inequality
constraints, and ¢ be the number of equality constraints.



Soft-margin form:

N-1
minimize 3||w|> + C Z én
n=0

subject to the constraints ¥ Xn, yn, Yn(W Xn+b) >1—¢&,



Define a hyperplane

wip(x)+b=0
such that
f(x) =w'p(x)+ b
classifies x.
¢ is a feature map that projects the vectors x into higher dimensions. Assume k is a

kernel function corresponding to ¢ for efficiently computing dot products in these
higher dimensions.

k(xa,xp) = ¢(X3)T¢(Xb)



Kernelized form (hard- or soft-margin):

minimize  1||w|?

subject to the constraints Y Xn, Yo, Yn(W d(xp+ b)) > 1 [-£,]

(This doesn’t actually use the kernel function. .. but when we put the problem in this
form, we anticipate using the kernel.)



This quadratic programming problem has an equivalent Lagrangian function

N-1
1
L(w, b,X) = Sl = 3" Aaya (wTélxa) + b)
n=0

This function has the dual representation

N1N1

Z Ap— = Z Z AnAmYnYm - (Xn,Xm)

nOmO

which we want to maximize subJect to constraints

0< A, [<C],

ZnNz_ol )\n}/n =0
where k(Xn,Xm) = ¢(xn) T ¢(xm)



Let K be the kernel matrix for data set xg,X1,...XN_1:

k(x0,%0) k(x1,) -+ k(xn-1,%0)
K — k(x0,x1) k(xi,x1) -+ k(xn—1,%1)
k(xo,xn—1) k(x1,xn-1) -+ k(Xn-1,XN-1)
Then
N-1 P NoIN-T
An — 5 AnAmYnYm Xnaxm)
n=1 n=0 m=0
becomes

D) =1TA— %,\T(ny o K)A

where 1 = [111---1]7 and o indicates the Hadamard product.



In the formula
1
D) =1"x— 5AT(ny o K)A
the Hadamard product o gives us

Yo - Yo - k(x0,%0) y1-Yo- k(x1,%0) yn—1" Yo - k(Xn=1,X0)

; Yo y1 - k(x0,x) yioykGaxa) e yne1 v k(xw-1,xa)
yy oK = ] .

¥o-yn—1- k(%0,Xn—=1) Y1 -yn—1-k(Oa,xn=1) -+ Yn—1-Yn-1- k(XN=1,XN=1)



Quadratic programming problem:

Gx < h
min  ix"Px+q"x
Ax = b
Our problem:
0<\; [S C]
max 17X — %/\T(ny o K)A
Y Ay = 0
-1
_ -1
We want to find A. Let P=yy" oK, q=| . [ A=(» » -+ yn-1) and
-1

b= (0).



Quadratic programming problem:

; 1, T T
min  5x'Px+q'x

For hard margin classification (0 < \;),

Gx

Ax

IN



Quadratic programming problem:
min  ix"Px+q7x

For soft margin classification (0 < A; < C),

1 0 0
0 1 0
G — 0 O 1
-1 0 0
0 -1 0

Gx

Ax

IA




Support vectors are {x; | \; # 0}.

Weights are

N—-1
w = Z )\n}/nxn = Z )\n}/nxn
n=0 n | Ap#0

Intercept/bias is

1
b= T 70y 2= (% 22 Aoy klxnxm)

m | A\j#0 n | An#0



To train a classifier for hard margin classification:

Given data X, targets y, and kernel function k,
Compute kernel matrix K
Compute P =yyT o K
Assemble g vector of —1s
Assemble A matrix of y; along the diagonal
Assemble G matrix of —1s along the diagonal
Assemble h vector of Os
Compute X vector by feeding P, q, G, h, A, and b = [0] into QP solver
Select support vectors from A that are not zero
Compute b

(For soft margin, modify G and h.)
To classify new data point x, compute sign(}_, | », 20 AnYnk(Xn,X) + b)



Coming up:
Due Fri, Mar 7:
Take SVM quiz

Due Wed, Mar 19:
Implement SVM classification

(Midterm on Fri, Mar 21)



