Support vector machines unit:

- Linear programming (last week Wednesday)
- SVM concepts (last week Friday)
- Lab: SVM applications (Monday)
- The math of SVMs (today)
- SVM algorithms (Friday)

Today:

- Problem overview
- Constrained optimization, Lagrangian multipliers
- Hard-margin SVMs as constrained optimization
- Begin formulation of soft-margin and kerelized SMVs

The most important source for all of this was Stephen Marsland, *Machine Learning: An Algorithmic Perspective*, 2015, pg 179–183.

Given training data \mathbf{X}, \mathbf{y} , where $y_n \in \{-1, +1\}$, find \mathbf{w} , b, and r, so as to

maximize r

subject to the constraints
$$\forall \mathbf{x_n}, y_n, y_n(\mathbf{w}^T \mathbf{x_n} + b) \ge r$$

 $||\mathbf{w}|| = 1$
 $r > 0$

Or, equivalently, find \boldsymbol{w} and b, so as to

minimize
$$\frac{1}{2}||\boldsymbol{w}||^2$$

subject to the constraints $\forall x_n, y_n, y_n(\mathbf{w}^T x_n + b) \ge 1$

Coming up:

Due Wed, Mar 5:

Read and respond to Urbina et al, "Dual use of Al-powered drug discovery" (See Canvas)

Due Fri, Mar 7:

Take SVM quiz

Due Wed, Mar 19:

Implement SVM classification

(Midterm on Fri, Mar 21)