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Abstract
Functional programming is losing its place in undergradu-
ate computer science curricula, in part because of the at-
tention given to many new ideas in the field. Nevertheless,
undergraduates benefit from an early experience in a sec-
ond programming paradigm, especially functional program-
ming. The solution, advocated here, is to weave functional
programming into the discrete mathematics course. Not only
does this give a convenient, early occasion to teach func-
tional programming, but it also allows the functional pro-
gramming topics and discrete mathematics topics to illumi-
nate each other. Furthermore, it provides a service course to
students in mathematics and other majors.

Categories and Subject Descriptors K.3.2 [Computers
and Education]: Computer and Information Science Education—
Computer and Information Science Education; G.2 [Dis-
crete mathematics]: General

General Terms Languages

Keywords Discrete mathematics, functional programming

1. Introduction
There is a wide variety of pedagogical and curricular ap-
proaches to introducing the field of computer science. This
can be seen by perusing the available textbooks for CS 1 or
similar courses. Even though the core topics for undergrad-
uate programs in computer science have been standardized
in such reports as the IEEE and ACM Computing Curric-
ula reports [13, 14], there remain considerable differences
across programs regarding what first programming language
or paradigm works best, the relative emphases for theory,
systems, and software development, the ordering and pairing
of topics throughout the curriculum, and which new trends
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or advanced topics to integrate into the curriculum and how
quickly.

In recent curricular trends, the topic of functional pro-
gramming is being squeezed out of many undergraduate pro-
grams. In this paper we advocate retaining it as a core and
early topic in the curriculum, specifically that the ideal place
for it is in a freshman- or sophomore-level course in dis-
crete mathematics. In Section 2 we make a brief defense for
keeping (or reintroducing) functional programming in the
undergraduate curriculum and observe the curricular pres-
sures that make this difficult. Section 3 lays out the case
for putting functional programming and discrete mathemat-
ics in the same course, showing that not only do the mathe-
matical and programming content streams complement each
other for computer science majors, but that they also to-
gether provide a useful service course for math majors and
others. Precedents for this approach are briefly surveyed in
Section 4. Section 5 addresses pragmatic aspects of imple-
menting a course in discrete mathematics and functional pro-
gramming, suggesting a course outline and reporting on the
author’s own experience. In Section 6 we conclude by re-
viewing the advantage of placing such a course in the cur-
riculum.

2. Functional programming in the
curriculum

2.1 The need for functional programming
Functional programming is vital to a well-rounded under-
standing of the field of computer science. Not only is the
functional programming model of computation foundational
to some approaches to the theory of computation, but impor-
tant applications have been produced in it. Even if students
end up programming primarily in an imperative or object-
oriented setting, seeing another paradigm increases their un-
derstanding of the paradigm they use most. Moreover, many
idioms and design patterns for object-oriented programming
are essentially ways to import features or programming id-
ioms from functional programming [7, 9, 12].

The SIGPLAN Workshop on Undergraduate Program-
ming Language Curricula, meeting ahead of the 2008 revi-



sions to Computing Curricula 2001, recommended a promi-
nent place for functional programming:

Shifting to functional programming is not merely
about a change in syntax; rather, it forces students
to approach problems in a novel way. This change in-
creases their mental agility and prepares them for a
life of practice in a world where languages continu-
ally grow, morph, and sometimes shift their perspec-
tive [2].

2.2 The squeeze on functional programming
The prevalence of functional programming surged in the
1980s with the publication of the original edition of Struc-
ture and Interpretation of Computer Programs [1], and many
schools began using a dialect of Lisp as the first or primary
programming language in their curriculum. Felleisen et al
describe this popularity as short-lived because of the diffi-
culty of then-available introductory material on functional
programming and because of how greatly functional lan-
guages differ from dominant programming languages [6].
(They also propose a solution: Begin the curriculum with
a functional language but follow it quickly with an object-
oriented language. This way the students learn early how to
think in both paradigms.)

With functional programming taken out of the introduc-
tory sequence, a typical student would be introduced to
it in a sophomore- or junior-level programming languages
course. This is where the IEEE and ACM Computing Cur-
ricula report (2001) places the topic (PL7) [14]. By that time,
students have acquired the imperative or object-oriented
paradigm (or a combination of them) as their native way
of thinking about computation, and functional programming
is viewed as a alternative curiosity.

Even that presence of functional programming in typi-
cal computer science programs is in jeopardy. Mark Bailey
observes that as the field of computer science grows, new
topics crowd for attention in a curriculum, and a core pro-
gramming languages course is likely to absorb a lot of the
pressure. “The emergence of offerings, at the undergradu-
ate level, of courses in bioinformatics, wireless networking,
security, game programming, robotics, and mobile comput-
ing. . . compete for a limited number of course slots in an
undergraduate computer science major. . . . Liberal arts col-
leges, in particular, have greater curricular pressures” be-
cause of limited time alloted to major courses [3].

For functional programming in particular, we note that
Computing Curricula 2001 does not place PL7 as a core
topic—in fact, one of the main goals of the Workshop on Un-
dergraduate Programming Language Curricula for the 2008
update to the Computing Curricula report was “to make the
functional programming unit (FP), PL7 in the curriculum,
required rather than elective” [2]. Although the 2008 up-
date does require exposure to more than one programming

paradigm, the CC 2008 Review Taskforce decided not to re-
quire functional programming in particular [13].

2.3 Other curricular needs to address
Some schools prefer to have an early course on the founda-
tions of computer science that gives computer science ma-
jors the mathematical background to reason about compu-
tational models and their limitations and to appreciate the
contributions of the theory of computation to computer sci-
ence and to science in general. For example, the computer
science program at Purdue University requires CS 18200, a
freshman course that begins with discrete math topics and
goes on to cover analysis of algorithms, proofs, automata,
and computability. A course like this may also be of interest
to students outside the computer science program.

Many computer science departments must provide pro-
gramming or other computing courses to serve the needs of
other programs at the school—most notably mathematics,
engineering, and natural science. There is great advantage
to giving the introductory courses for computer science ma-
jors double duty so that they also fill this need for service
courses. Not only can they be used for recruiting (so that a
few mathematics or engineering students can be “converted”
to computer science), but for small departments it is a mat-
ter of efficient use of faculty load. Thus for many schools
it makes sense for introductory computer science courses to
be designed for other populations in addition to computer
science majors.

3. Where should functional programming
go?

In light of the need for functional programming in the com-
puter science curriculum and its precarious position in ei-
ther the introductory programming course or in a mid-level
programming languages course, the question arises: Where
should functional programming go in the computer science
curriculum? We propose an answer: Put it in the discrete
mathematics course. Call it, “Discrete Mathematics and
Functional Programming,” DMFP. Students can take it some
time in their first three semesters in parallel with a traditional
introduction to programming sequence.

Functional programming and discrete math are closely
tied. It is immediately apparent that the two areas of study
are related. To begin, functions and recursion are fundamen-
tal to both [11]. Moreover, proof by induction is an important
topic of a discrete math course, which is also closely tied to
recursion.

Functional programming illuminates discrete mathemat-
ics. The inclusion of functional programming in a discrete
math course has a pedagogical benefit to the teaching of the
discrete math topics. As Cong-Cong Xing has pointed out,
the treatment of functions in discrete math differs enough
from students’ experience with functions in pre-calculus to



cause a good deal of confusion. In particular, students have
trouble differentiating between the name of a function and
the function itself, and, along the same lines, trouble under-
standing functions as discrete objects or the idea of a higher-
order function. A functional programming language gives a
context in which to illustrate all these things [17].

Moreover, functional programming languages are good
contexts for modelling other ideas in discrete mathematics.
Types and lists each model sets, though in different ways.
Lists also model sequences. Tuples model the elements of a
Cartesian product. Relations can be modeled in many ways:
lists of tuples, predicates, and matrices, to name three. Func-
tions, of course, represent functions. Quantification can be
illustrated algorithmically in functions that process lists.

DMFP puts functional programming early. It has be-
come standard for students to take a course in discrete math-
ematics or discrete structures in their first or second year.
The CC01 gives “Discrete Structures” 43 core hours, more
than any other area. Putting functional programming here
is a compromise between a functional-first approach and
delaying functional programming until a later point; it in-
corporates the advantages of functional-first but still allows
the introductory programming sequence to be taught in an
object-oriented or imperative paradigm.

Specifically, by putting functional programming here,
students will have experience in functional programming
ideally in their first year, in their second year at the latest.
This way they can digest it before a sophomore- or junior-
level software development course and thereby appreciate
the influence of functional programming on design patterns.
Likewise, the students’ experience in a second paradigm al-
lows a later course in programming languages to be more
advanced.

DMFP allows a thorough investigation of functional pro-
gramming. If functional programming is not taught until
a mid-level programming languages course, then that course
likely spends only one unit on functional programming in
a series of units on different programming paradigms. Stu-
dents are unlikely to acquire a thorough understanding of,
much less competency in, functional programming with
merely a passing exposure. Functional programming would
not get a full course’s worth of attention in a DMFP course
either, since it would be only part of the content stream.
However, with functional programming topics being spread
throughout the semester—and, more importantly, with stu-
dents continually practicing functional programming—the
students will gain and retain a more thorough skill base in
the paradigm.

DMFP motivates discrete mathematics for computer sci-
ence majors. Despite computer science and mathematics
being kindred fields, computer science major populations
include many math-averse students. Many are frustrated at
the math requirements of the program and are slow to un-

derstand the relevance. The situation is more likely to be
aggravated than remedied when the discrete math course is
taught by the mathematics department. The functional pro-
gramming component in a DMFP course provides a set of
enjoyable topics and assignments to keep the computer sci-
ence majors engaged. More importantly, the links between
the mathematical topics and the pragmatics of programming
are made explicit.

DMFP motivates programming for math majors. Com-
puting is a vital topic for contemporary math majors. Many
will need some level of competency in programming at some
point in their studies, whether in professional practice as ac-
tuaries, to introduce algorithmic topics as high school math
teachers, or in research as graduate students. Accordingly,
math major programs typically include at least one semester
of programming. Unfortunately, many math majors find pro-
gramming to be foreign and become frustrated when they do
not see any immediate relevance for their mathematical stud-
ies. Their frustration is especially understandable if they are
dropped into a Java programming course that was not de-
signed for their needs.

What better context to introduce programming to math
majors than a math course? Just as the programming topics
illuminate and motivate the math topics for computer science
majors, the math topics do the same to programming topics
for math majors.

The course easily can be designed to hit a sweet spot for
both majors. There is a synergistic effect in bringing both
student populations together. The slogan used in advertis-
ing the course taught by the author is Computer science ma-
jors should learn to write proofs and math majors should
learn to write programs together. Computer science ma-
jors who have had a previous or concurrent programming
course will be at an advantage for learning functional pro-
gramming, whereas math majors usually are better prepared
for the course’s proof-writing content. The two populations
can partner and help each other.

DMFP provides a framework for talking about computer
science foundations. Many computer science programs
have an early course on the foundations of computer sci-
ence that can give an overview of the field, especially of the
theoretical aspects. Topics can include models of computa-
tion, automata, asymptotic growth of functions, correctness
proofs, P vs NP, and the limits of computation. It is hardly
possible to deal with these topics rigorously in an introduc-
tory course—in fact, for many programs these ideas appear
in an elective if anywhere. However, touching on these ideas
informally at the front of the curriculum allows the students
to connect them with the practical material they see through-
out the course of study.

A course in discrete mathematics provides the right
framework for discussing these ideas, since they rely on sets,
relations, functions, and graphs, not to mention logic and
quantification. Moreover, even a smattering of functional



programming provides simple illustrations of the computa-
tional issues and provides exercises accessible even to be-
ginning students.

4. Precedents for this approach
Although the case for teaching functional programming
and discrete mathematics together is here presented as a
proposal—and it is not common practice—it is not alto-
gether without precedent either. Roger Wainwright [15], Pe-
ter Henderson [8], Christelle Scharff and Andrew Wilden-
berg [11], and Cong-Cong Xing [17] have reported expe-
riences in teaching Standard ML or Miranda in a discrete
math course at five institutions for two decades. Moreover,
the Model Curriculum for a Liberal Arts Degree in Com-
puter Science by the Liberal Arts Computer Science (LACS)
Consortium, which was produced in 2007 in response to
Computing Curricula 2001, puts a course titled “Discrete
Structures and Functional Programming” in the introductory
sequence [4].

While many texts exist either on discrete mathematics or
functional programming, not many are available for teach-
ing the two together. Doets and van Eijck [5] and O’Donnell,
Hall, and Page [10] have texts that use Haskell to illustrate
discrete mathematics. Fenton and Dubinsky have a text that
similarly uses ISETL [16]. Moreover, the author of this ar-
ticle has a forthcoming text that completely integrates dis-
crete mathematics and functional programming, using Stan-
dard ML.

5. Implementing Discrete Mathematics and
Functional Programming

In this section we list some suggestions in implementing the
approach advocated in this paper. We provide a sketch of
an outline for such a course and report on our experience in
teaching a course that follows this program.

5.1 Course outline
Discrete mathematics courses, even those intended for com-
puter science students, vary greatly in what topics are cov-
ered and in what order. Should the course start with sym-
bolic logic since logic is the most fundamental science, or
should “raw material” like sets or integers be introduced
first? Should the students’ first experience with proofs be
on sets or integers, or a combination of the two? Should the
chapters on relations and functions be ordered from general
to specific (relations first, then functions) or specific to gen-
eral (functions first, then relations)? Should graphs and rela-
tions be introduced together or separately? Should induction
be introduced early as a basic proving tool or late as an ad-
vanced proof technique?

We believe that the DMFP approach is not tied to any
particular ordering of the material. In the list below we
describe the points of contact between the discrete math

topics and the functional programming topics, but there are
few hard dependencies between items in the list.

Sets. Functional programming makes heavy use of lists, and
even though lists are ordered and sets are unordered, it
is natural to introduce lists along side of sets as a way
to model them in a programming language. Functions on
lists model operations on sets. Sets and types also illumi-
nate each other, and this point in the course is an oppor-
tune time to introduce simple user-defined types, such as
SML’s datatype construct (type in F# and OCaml). Tu-
ple types are introduced to illustrate Cartesian products.

Symbolic logic. Boolean values and operations naturally
model ideas from symbolic logic. Functions that return
boolean values represent predicates. Whether the course
begins with sets or with logic, once the students have
seen both concepts, then multiple quantification can be
used in and illustrated by algorithms. For example, an
exercise asking the students to write a function that takes
a list of integers and determines whether it contains an
item that is the divisor of all the others requires the stu-
dents to nest a universally quantified question inside of
an existentially quantified question.

Proofs. Instructors may find that the portion of the course
that introduces proofs has the fewest natural ties to pro-
gramming. With a little effort, however, the course can
show students how algorithms give insights into theorems
and their proofs and that mathematical results and their
proofs sometimes provide algorithms. As an example of
the former, students can write a function that computes a
powerset of a set and then experiment with sets of sev-
eral sizes. The observation that the size of the power set
doubles as the size of the original set grows leads to the
theorem |P(A)| = 2|A|. Moreover, the algorithm itself
suggests an outline for the proof. In the other direction,
the Euclidean algorithm and the division algorithm grow
naturally out a theorem about greatest common divisors
and the quotient-remainder theorem, respectively.

Induction. Induction is one of the clearest places in the
semester where functional programming ties in. If induc-
tion is introduced later in the semester, then by that time
students already have experience thinking recursively, so
proofs by induction will not seem as foreign to the stu-
dents as is often the case. Structural induction and re-
cursively defined types should be taught together, and
students will find that proofs of structural induction will
look very similar to functions on recursive types. More-
over, if structural induction is taught before mathematical
induction, then an implementation of whole numbers us-
ing the Peano axioms makes the transition from structural
induction to mathematical induction seamless. Moreover,
proofs of algorithm correctness give a concrete motiva-
tion for mathematical induction.



Relations. Relations provide an opportunity to illustrate the
trade-offs between different ways to represent or store
information. Relations can be represented on a computer
in at least three ways: as predicates (functions), as sets
of pairs (lists of tuples), or as matrices. The students’
experience in programming earlier in the semester also
makes it easier to talk about applications of relations to
different areas of computing, such as databases.

Functions. One goal of studying functions in a discrete
math course is for the students to understand functions
as mathematical objects. This is the time in the semester
to talk about functions as first class values. This opens
the way for introducing several idioms in functional pro-
gramming, some of which have convenient ties to ideas
in the study of functions. For example, the use of map is
an illustration of the image of a function.

Cardinality and computability. Some of the deeper results
of set theory provide the background for big ideas in the
theory of computation. For example, Russell’s paradox
(there can be no set of all sets), countability (when car-
dinality is extended to infinite sets, reals are a higher or-
der infinity than integers), and computability (the Halting
Problem is not computable in known models of compu-
tation) form a triad of special topics.

Graphs. In a DMFP course, the section on graphs presents
both the theoretical aspects of graph theory (the hand-
shake theorem, isomorphisms) and the practical side (al-
gorithms for searches, spanning trees, and shortest paths).
The course could also explore the trade-offs of different
ways to represent graphs on a computer.

The course should also include excursions into larger pro-
gramming examples that exercise students’ functional pro-
gramming skills, illuminate the mathematical topics, and
generally excite the students about the field. Obvious exam-
ples include a system for parsing and transforming text, an
automatic theorem prover, and applications in game theory.

The combined experience in programming and discrete
math provides the foundation for other and more advanced
topics, especially if the course is spread through two semesters.
Many discrete math courses have units on number theory,
combinatorics, and discrete probability, and some explore
mathematical structures such as boolean algebras, lattices,
and groups. In any of these cases, the students’ experience
in programing allows for the inclusion of applications, uses,
and illustrations in computing. If the course should include
computer science topics such as a survey of automata and
formal languages or complexity classes and asymptotic no-
tation, students will have the mathematical background to
deal with those ideas rigorously.

5.2 Experience
The author has taught discrete math with a functional pro-
gramming component (using Standard ML) eight times. In

six of those offerings the programming component has made
up at least 40% of the course content and the two topic
streams were fully integrated. The course is populated by
both math majors and computer science majors, as well as
a few students from other programs. The course is required
for computer science majors; for math majors, the course is
one of four options available for fulfilling a supporting re-
quirement in computing. Students from other programs take
the course as pure elective. The computer science majors are
freshmen and sophomores, taking the course in parallel with
a first, second, or third semester of programming in Java or
C. There has been at least one case of a computer science
major taking the course as her first course in the program.
The math major population in the course is drawn from all
class years; almost all of them have little or no programming
experience coming into the course.

The math majors naturally are at an advantage over the
computer science majors on the mathematical topics, and
likewise computer science majors over the math majors on
programming topics. However, neither population domi-
nates the other in overall performance over the course of
the semester, and top students in the class have come from
either major.

Since the course is taught at a small college, the author
can observe the long-term result of the course among com-
puter science students by seeing how they put the ideas to use
in later courses in the curriculum. In particular, the early ex-
posure to functional programming has made students better
prepared for topics in software development, programming
languages, and analysis of algorithms. Moreover, the author
has observed students expressing long-lasting appreciation
for the ML language and for the usefulness of discrete math-
ematics.

It is harder to observe the long-term benefits of the course
among math majors. However, enrollment in the course for
the fall 2010 was up 275% over enrollment in fall 2009. (The
course is offered only in the fall.) This did not correspond to
an increase in enrollment in the computer science program
but came primarily from an increase of math majors and non-
majors signing up for the course. Among math majors the in-
creased interest appears in part to be from math majors being
advised by upperclassmen and mathematics professors that
the course is good preparation for modern algebra (a change
in the course meeting time also made it more accessible to
math majors than in previous offerings).

6. Conclusions
Computer science, as a quickly-changing and still relatively
young field, has resisted standardization of undergraduate
curriculum and has seen many pedagogical trends come and
go. It is not our present intention to advocate yet another
trend but to make the case for a solution to a specific problem
in light of the current curricular landscape.



Teaching a course in discrete mathematics and func-
tional programming has the advantage of finding a place
for functional programming in an increasingly full curricu-
lum, showing the students a second or third programming
paradigm early in their course of study, and making explicit
links between ostensibly disparate topics. The approach is
particularly appropriate for liberal arts colleges that value
integration between fields and where the course can serve
several populations of the student body.
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