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ABSTRACT
Multiple dispatching and the visitor pattern are approaches
to making object-oriented programs more extensible. Both
have a flavor of pattern matching, thereby moving object-
oriented programming closer to functional programming. The
key idea of these approaches can be crystallized as a notion
of visitor which lies between functions and objects. Can
this idea be developed into a new form of visitor-oriented
programming which combines the best of functional and
object-oriented programming? As a first step, we present
a visitor calculus in which each value is a visitor and ev-
ery visitor call uses double dispatching. We illustrate the
relationships to other paradigms by translating the lambda-
calculus to the visitor calculus, and the visitor calculus to
Java. Our calculus forms the core of a language in which we
have programmed the translation of the lambda-calculus to
the visitor calculus itself. To demonstrate the expressiveness
of visitors, we show the translation in four versions that use
smaller and smaller subsets of the language. Along the way,
we present correctness proofs and examples of running an
implementation of our language.

1. INTRODUCTION

1.1 Background
A program is a set of datatypes and a set of behaviors over

cases of those datatypes. Maintaining a program requires
extending the datatypes and their cases and extending the
behaviors over them. We would like to to do this modu-
larly, that is, without recompiling the entire system each
time an extension is made. This represents a well-known
way of comparing programming paradigms and a dilemma
in programming language design [9, 3, 5, 10]. In object-
oriented languages, we can easily extend the datatypes by
writing new classes, including subclasses. Extending behav-
ior, however, is difficult since methods are members of a
class and so cannot be changed or added to without recom-
piling that class. Functional programming takes the other
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side of the trade off. There, new functions on a datatype can
be written and compiled separately, but once a datatype is
created, its cases are fixed.

The visitor pattern [4] is an attempt to solve this prob-
lem in an object-oriented paradigm; that is, it is a way
to add functionality modularly without changing the set of
datatypes. If we have a set of classes and determine that we
need new functionality for them, instead of adding a method
to each and recompiling, we write a visitor class, with a visit
method for each class, which will perform that functionality.
This way we add behavior modularly. However, while intro-
ducing the benefit of functional programming to an object-
oriented setting, we are also importing the liability. Now we
can no longer add classes easily. To use visitors for exten-
sion, we must in advance give each class an accept method
(not to mention making sure that the visitor will have access
to all internal data necessary for its task). More seriously,
a visitor must know all the classes on which it will operate
[8]. The visit and accept methods are necessary because us-
ing visitors is essentially using dynamic double dispatch—
the correct method is selected based on both the acceptor’s
class and the visitor’s class. Most object-oriented languages
support only single dispatch.

What we notice is that while a visitor is in fact an object,
in a sense it can also be viewed as a function. A visitor is
related to both object-oriented and functional programming.
We see a spectrum:

Spectrum: function — visitor — object.

Is there a way we can exploit this approach to system build-
ing so that we have the advantages of both paradigms, but
the disadvantages of neither? What we would like is a lan-
guage designed specifically for programming with visitors,
where the visitor is the basic unit and the need for accept
methods and precognition of acceptor classes is subsumed
by the language semantics, including rules for double dis-
patch. In other words, we would like a language where both
datatypes and behaviors can be added modularly.

Various systems have been developed to study double dis-
patch and the visitor pattern. Millstein and Leavens [6]
designed the Tuple language to show how to add multiple
dispatch to conventional object-oriented languages cleanly,
letting the receiver of a method call be a tuple of objects
rather than a single object and selecting a method most spe-
cific to those objects. If there is no appropriate method or
no most specific method, such a call causes a message not
understood or message ambiguous error, respectively. The
second of these errors is a result of the dispatch being sym-
metric. Generalizing to multimethods (any methods where



dynamic dispatch depends on more than one argument), a
multimethod is symmetric if all dispatching arguments are
treated uniformly, that is, no argument has priority for de-
termining an appropriate method.

Millstein and Chambers [7] presented Dubious, an object-
oriented core language with symmetric multimethods. Du-
bious uses a module system to reason about extensibility
and features a static type system which ensures that pro-
grams that type check do not throw message not under-
stood or message ambiguous errors. Functions are objects
and thus are first-class. Similarly, Clifton, Leavens, Cham-
bers, Millstein [2] presented MultiJava, also with symmetric
multimethods, but with a class system like that of Java.
A feature of MultiJava is the open class, a class to which
methods can be added without changing the class directly.
This offers an alternative to the visitor pattern in that new
functionality can be added to a class without the the prior
planning needed to make infrastructure for visitors.

In order to capture the flavor of the visitor pattern it-
self, double dispatching should be asymmetric— if a visitor
does not have a method that matches the class of an accep-
tor exactly but inherits a method that does, that method is
chosen over a method it has which matches an ancestor class
to the acceptor. Asymmetric semantics eliminates the pos-
sibility of a message ambiguous error since the precedence
among arguments disambiguates the method selection. Fur-
thermore, a visitor class serving as an ancestor to all vis-
itors could contain a visit method for whatever class tops
the class hierarchy (such as Object in Java; in a language
designed specifically for visitors, this may be the visitor

class itself) and ensure no message will not be understood.
which is convenient for a core calculus and formal reasoning
since eliminating the possibility of the computation causing
an error allows us to focus on the computation itself. From
a practical software engineering point of view, symmetric
double dispatching may be preferable; however, in this pa-
per, we will pursue the asymmetric variant, to keep it close
to the visitor pattern.

Dubious is classless like the Abadi-Cardelli calculus. Du-
bious’s module system is good for what it formalizes—modules;
a core calculus that focuses on visitor behavior, however,
would be more tractable without them and without the full
programming language features of MultiJava. We would fur-
ther like a calculus that can be related to both functional
and object-oriented paradigms by encodings among repre-
sentative languages, demonstrated by correctness proofs and
implementations.

Castagna, Ghelli, and Longo [1] studied the λ&-calculus of
overloaded functions with multiple dispatching. While mo-
tivated by object-oriented programming, the λ&-calculus is
purely functional. In the λ&-calculus, an overloaded func-
tion is essentially a set of functions, and an overloaded-
function call uses dispatching via the types of its members.
Notice that functions are the primitive concept from which
overloaded functions are constructed. While the λ-calculus
is a sublanguage of the λ&-calculus, translating the λ&-
calculus to a language such as Java remains unexplored and
seemingly difficult. As far as we know, the λ&-calculus has
not been used as the core of a language.

1.2 Our results
This paper presents a new calculus, VisiCalc, and a larger

language, Peripaton, for which VisiCalc is a core. Both

hard-wire and formalize the visitor pattern. These languages
will encourage the use of the visitor pattern as a founda-
tional programming paradigm. They also provide a frame-
work for formal reasoning about the visitor pattern, modular
extensibility, dynamic double dispatch, and the relationship
between object-oriented programming and functional pro-
gramming. We present translations of the λ-calculus to the
visitor calculus, and of the visitor calculus to Java. Along
the way, we present correctness proofs and examples of run-
ning an implementation of Peripaton.

1.2.1 A visitor calculus
In our visitor calculus, each value is a visitor and every

visitor call uses double dispatching. The grammar for Visi-
Calc is as follows:

p ::= (c, e) programs
e ::= expressions

(e e) invocations
| new t[e] creations
| x field references
| acceptor parameter references

c ::= t : t{x; m} classes
m ::= (t 7→ e) method mappings

A formal semantics will be presented in Section 3. For
now, a VisiCalc program is a set of classes and a main ex-
pression. Each class defines a visitor type; a class definition
contains a name for the class, the class’s parent, a list of
fields, and a list of methods. Methods do not have names,
but are identified by the type of a dispatching parameter (we
can think of each method having the name visit, and there
can be at most one such method for any parameter type).
The parameter is referred to by acceptor; intuitively, the
callee or receiver of the method has a visitor, and the pa-
rameter is the acceptor. (One could easily reverse this and
call the methods “accept” and the parameter “visitor,” if
the reader finds that more in line with his experience with
the visitor pattern.)

When a method is called, (e1 e2), the method mappings
for in the definition of e1’s class are searched for a method
matching e2’s type. If none are found, the methods of e1’s
parent class are searched, and so forth. If no appropriate
method is found among e1’s class and all its ancestors, then
we do a similar search for a method appropriate for e2’s
parent class. This entire process will terminate because we
assume a pre-defined class visitor that is at the top of
the class hierarchy, as Object in Java, which has a method
appropriate for any parameter, returning that parameter.

Here is the translation of the λ-term λx.x:

cla0: visitor {

(visitor -> acceptor )

}

new cla0[]

This and other code examples appear as they are pro-
duced by our implementation of the translation algorithms.
It has one class, representing the single lambda, which has a
method that simply returns its parameter. The main expres-
sion is an instantiation of the class. To apply this, we use
the main expression as the visitor in an invocation; what-
ever the acceptor is, it will surely be an instance of visitor,
and so the method in cla0 is called, returning the acceptor.



Here is the translation of the visitor program into Java:

class visitor extends Object {

visitor() {}

visitor accept(visitor x) {

return x.visit_visitor(this);

}

visitor visit_visitor(visitor acceptor) {

return acceptor;

}

visitor visit_cla0(cla0 acceptor) {

return this.visit_visitor(acceptor);

}

}

class cla0 extends visitor {

cla0 (){

super();

}

Visitor accept(Visitor x) {

return x.visit_cla0(this);

}

visitor visit_visitor(visitor acceptor) {

return acceptor;

}

}

new cla0()

In object-oriented programming, visitors typically have a
visit method and data structure have an accept method. In
VisiCalc, everything is a visitor and everything can be vis-
ited. Therefore, the equivalent classes in Java have both
visit methods and an accept method. All classes in the
translated system extend the class visitor. The object new
cla0() is a visitor, and to visit an object (say, another new

cla0()), we call (new cla0()).accept(new cla0()). The
accept method calls visit cla0(); cla0 has no such method
in its definition, but it inherits one from visitor which sim-
ply calls the visit method appropriate for the acceptor’s par-
ent class, visitor. Finally cla0.visit visitor() is called,
returning its parameter, the original acceptor new cla().

1.2.2 A language based on the calculus
To show how VisiCalc can serve as the core of a larger

language, we extend it to allow extra, non-dispatching ar-
guments to parameters, self references, local variables (de-
fined in let expressions), non-local field references, unique
identifiers, and branch expressions. The grammar for the
language, called Peripaton, is shown in Figure 1.

Note that x is now called a variable reference rather than
a field reference. This is because in Peripaton variables can
also refer to local variables and extra parameters. For the
sake of Peripaton, we assume unique identifiers are values
along with visitors. They are produced by gensym. The
comparison in branch statements is defined only for unique
identifiers; the comparison is true if both values originate
from the same evaluation of gensym.

The rest of the paper. Section 2 gives an extended
example, a compiler written in Peripaton which translates
from the lambda calculus to VisiCalc. This illustrates and
motivates the programming paradigm, demonstrates the con-
nection between functional programming and visitor-oriented

p ::= c e programs
e ::= expressions

(e e) invocations
| (e e < e >) invocations with extra,

non-dispatching parameters
| new t[e] creations
| x variable references
| acceptor dispatching parameter
| this self references
| let (x = e) in

e end let expressions
| {e}.x non-local field references
| gensym unique identifier creations
| if e = e then e

else e branch expressions
c ::= t : t{x; m} classes
m ::= method mappings

(t 7→ e) ordinary mappings
| (t < e > 7→ e) mappings with extra,

non-dispatching parameters

Figure 1: The Peripaton grammar

programming, and leads the reader from Peripaton to Visi-
Calc. Section 3 gives a formal specification of VisiCalc, in-
cluding a type system and a proof of type soundness. Section
4 builds the bridge to conventional object-oriented program-
ming by giving a translation from VisiCalc to Featherweight
Java and proving type preservation and behavior preserva-
tion.

2. FROM FUNCTIONS TO VISITORS
To illustrate and motivate the programming paradigm, we

present a succinct but realistic example. A familiar use of
the visitor pattern is performing compiler passes on an inter-
mediate representation of a program; for example, Gamma
et al. [4] use this in their introduction to the pattern. Con-
sider abstract syntax trees; many operations desirable in
the middle of a compiler can be implemented by a traver-
sal of the tree (static checking, code transformation, pretty-
printing, code generation, etc.). When visiting a node in
the tree, the visitor can recursively visit the components
(children) of that node and use those results in computing
the result at the current node. A new compiler pass can be
written quickly by extending a general depth-first visitor,
inheriting code to perform the traversal— this is particu-
larly convenient for compiler passes that need to inspect
only certain parts of the tree. This is also convenient for
maintaining the compiler if new constructs are added to the
language: a new compiler can be constructed by extending
all the visitors with visitors that contain methods only for
the new constructs.

In this section we present a translation from a call-by-
value λ-calculus to VisiCalc. We first specify the translation
formally and then implement it in our language Peripaton.
To demonstrate the expressiveness of visitors, we present
four versions of the implementation, written in smaller and
smaller subsets of Peripaton. The four programs are each
200–300 lines long; in this section we will show excerpts.
In the full version of the paper, which is available from our
webpage, there is an Appendix A with all four programs in



their entirety, including comments.

2.1 Specification of the translation
The metavariable ∆ stands for the “current” variable or

can be empty. Γ is a list of VisiCalc classes. Even though
Γ contains the whole class, if α is the name of a class in Γ,
we say α ∈ Γ for convenience. ∆ · Γ ` M ; Γ′ e means
that, given environment variables ∆ and Γ, lambda calculus
expression M is translated to the list of VisiCalc classes
Γ′ and main VisiCalc expression e. fv(M) returns the free
variables of lambda calculus expression M . A variable is
free in an expression if it is not bound as the argument in
any lambda abstraction that occurs in the expression and
encloses the variable. If a term has no free variables, then
it is closed. The notation [x/y]fv(M) means the list of free
variables in M with x substituted for y.

(x) · Γ ` x ; Γ acceptor (1)

(y) · Γ ` x ; Γx, y 6= x (2)

∆ · Γ ` M1 ; Γ′ e1 ∆ · Γ′ ` M2 ; Γ′′ e2

∆ · Γ ` (M1 M2) ; Γ′′(e1 e2)
(3)

(x) · Γ ` M ; Γ′ e α /∈ Γ′

(y) · Γ ` λx.M ;

Γ′ · α : visitor{fv(λx.M)
(visitor 7→ e)}

new α[[acceptor/y]fv(λx.M)]

(4)

(x) · Γ ` M ; Γ′ e α /∈ Γ′ fv(λx.M) = ∅
∅ · Γ ` λx.M ;

Γ′ · α : visitor{(visitor 7→ e)} new α[]
(5)

This algorithm translates a program by building up a list
of classes and producing a main expression. Each lambda
term represents a new class in the list of classes and an
expression creating an instance of that class. Intuitively,
functions become visitors. The free variables in the lambda
term become fields in the class, and the argument to the
abstraction is the argument to a method in the class (i.e.,
acceptor). For this reason, we need to know the argument
to the nearest enclosing lambda term, if any, represented by
the metavariable ∆.

Rule (1) translates an occurrence of the current variable
to acceptor. Rule (2) leaves an occurrence of a non-current
variable intact; it becomes a field reference. To translate an
application, rule (3) translates the two composing lambda
calculus expressions (each of which translation may have the
side effect of producing some new classes, captured by the
use of Γ′ and Γ′′) and creates an invocation composed of the
the two resulting visitor expressions; thus function calls are
translated to function calls.

The translation of an abstraction when a current variable
is present in rule (4), results in a new class being added
to the class list, as we anticipated above. Note that the
class hierarchy is flat, with all classes extending visitor.
The single method dispatches on visitor, meaning that this
method will apply to any argument, as would be the case
for the original lambda term. The body of that method is

the translation of the body of the lambda term, and that
translation may itself produce new classes. The arguments
given to the constructor are the free variables of the term
(note that this excludes x) since the presence of a current
variable implies that this will be a subexpression of a body
of a method and so fields will be present. We need to re-
place the current variable with acceptor, however, since the
method parameter, rather than a field, is associated with it.
Intuitively, the expression new α[. . . ] builds a closure that
represents λx.M . Rule (5) covers the case for a lambda
term where there is no current variable and the free variable
list is empty. (If there is no current variable, then we must
be translating a top-level term, and if the program we are
translating is a closed term, then the free variable list will
be empty. The translation is not defined for a top-level term
that is not closed.) In that case the constructor needs no
arguments since the class has no fields.

The second example is a term for application, λf.λx.fx.
This takes two arguments (in curried form) and treats the
first as a function, applying the second to it. It is translated
to

cla0: visitor {

f;

(visitor -> ( f acceptor ))

}

cla1: visitor {

(visitor -> new cla0[acceptor])

}

new cla1[]

Each lambda is translated to a class. One class is for the
inner lambda. The free variable is in the field. It takes a
parameter and applies it to the field. The other class has a
method that feeds its parameter to the constructor of a new
instance of the first class, making it the value of its field,
just as applying a value to the outer lambda would make a
closure for the inner lambda.

2.2 Implementation in Peripaton
We now present the implementation of this encoding in

Peripaton. First we need a few classes to serve as data struc-
tures representing the abstract syntax trees of the source
language:

Goal : visitor {

expr;

}

Abstraction : visitor {

id;

expr;

}

Application : visitor {

expr1;

expr2;

}

LambdaIdentifier : visitor {

uid;

}



Since everything in Peripaton is a visitor, these classes
also extend visitor. They are used only for data, however,
and contain no functionality. Goal stands for the entire pro-
gram, the root of the tree. Since a program in the lambda
calculus is simply an expression, Goal has one field, which
stands for an expression. An expression can be an abstrac-
tion, an application, or a variable. For these we have the
classes Abstraction, Application, and LambdaIdentifier

(the last is so named in order to distinguish it from an iden-
tifier in the target language). Peripaton is not typed, but
if it were, the id field of Abstraction would be typed to
be a LambdaIdentifier; it represents the bound variable in
that lambda term, while expr represents the function body.
Application has two fields representing the receiver and ar-
gument. Finally, LambdaIdentifier should have as its field
a unique identifier as would be produced by gensym.

We need another set of visitor classes to build an abstract
syntax tree in the target grammar:

TargetGoal : visitor {

classList;

expr;

}

Class : visitor {

name;

parent;

fieldList;

methodList;

}

Method : visitor {

type;

expr;

}

Invocation : visitor {

expr1;

expr2;

}

Creation : visitor {

name;

exprList;

}

AcceptorKW : visitor { }

VisitorKW : visitor { }

VisitorIdentifier : visitor {

uid;

}

These are not conceptually different from the earlier set,
but they reflect how a program in a Peripaton-like language
is a set of classes and a main expression; a class has a name,
the name of a parent class, a set of fields, and a set of meth-
ods; and that a method is a dispatch type and a body. We
also require classes AcceptorKW and VisitorKW to stand in
for the keywords acceptor and visitor, since they can ap-
pear in the place of identifiers.

A visitor to perform the encoding will need methods to
handle each source construct. It also needs to maintain a

current variable (the one bound in the nearest enclosing ab-
straction) and a list of classes that have been generated so
far. These will be passed as extra parameters. Consider the
method for handling an application:

EncodingVisitor : visitor {

...

(Application <v, cl> ->

let t1 = (this {acceptor}.expr1 <v, cl>),

t2 = (this {acceptor}.expr2

<v, {t1}.classList>)

in

new TargetGoal[{t2}.classList,

new Invocation[{t1}.expr,

{t2}.expr]]

end)

...

}

Application indicates the type of the parameter; this
method will be called when a visitor of class Application or
any descendent is applied to a visitor of class EncodingVisitor
or any descendent, assuming no more specific methods have
been written. <v, cl> list the extra, non-dispatching pa-
rameters which stand for the current variable and the list of
classes so far.

The first step in the computation is to apply the visi-
tor recursively to the first expression in the application.
Since acceptor refers to the parameter (known to be of
type Application), we extract the first expression using
non-local field access, {acceptor}.expr1. We use this to
apply the same visitor, passing extra arguments v and cl

unchanged. This invocation returns a TargetGoal, which is
useful not only to represent the finished product but also a
current state in the translation process, as in this case. We
store this in t1.

We want similarly to translate the other expression in the
application. However, several more classes may have been
added to the class list as a side effect of the translation of
the first expression. We extract it from t1 and pass it as an
extra parameter in place of cl. We store the result in t2.

The return expression is a new TargetGoal. No classes
are added at this point in the translation, but some may
have been added in the translation of the second expression.
Therefore we construct a TargetGoal with the classList

from t2 as its cl field. Its main expression, which concep-
tually has the same effect as the expression we are translat-
ing in the source language, is an invocation using the main
expressions from the two TargetGoals produced by the re-
cursive applications of the visitor.

2.3 Removing non-local field references
We also use this example to build a bridge between the

full Peripaton language and the core calculus we will use
for formal reasoning later in the paper. In the rest of this
section we will remove constructs from Peripaton by steps
to arrive at the calculus, showing the code for translating
Application at each step.

The first victim is non-local field references. These refer-
ences make code concise but do not add to the expressive



power of the language. Indeed, some philosophies of soft-
ware engineering discourage non-local field reference, saying
that fields ought to be retrieved by accessor methods. In
lieu of non-local references, we must provide accessor meth-
ods for the classes that make up the abstract syntax tree.
But what would these methods be like? Accessor methods
typically take no parameters and have names similar to the
fields they retrieve. Peripaton methods have no name and
require at least one parameter.

To emulate this functionality we propose a programming
idiom that uses accessor visitors— we create a new class that
contains no functionality or data but is used only to trigger
an accessor method. When we wish to retrieve the value of
a field, we make an invocation with a visitor of the accessor
class as the parameter. We can consider the parameter to be
simply ignored— although in fact it is not ignored, since it
is used for dispatching. In our example, we create a GetExpr

class and a corresponding method for access to the expr field
of Goal:

Goal : visitor {

expr;

(GetExpr -> expr)

}

GetExpr : visitor {}

To use this on a Goal stored in g, we write (g new

GetExpr[]).
This idiom fits nicely with the object-oriented perspective

of a method call being a “message send.” An object of the
getter class is a message; when a visitor visits that object, it
responds to the message. Observe the new code fragment:

EncodingVisitor : visitor {

...

(Application <v, cl> ->

let t1 = (this (acceptor new GetExpr1[])

<v, cl>),

t2 = (this (acceptor new GetExpr2[])

<v, (t1 new GetClassList[])>)

in

new TargetGoal[(t2 new GetClassList[]),

new Invocation[

(t1 new GetExpr[]),

(t2 new GetExpr[])]]

end)

...

}

2.4 Removing non-dispatching arguments
Another language feature that is convenient but adds more

headache than expressiveness when it comes to formal rea-
soning is the extra, non-dispatching arguments. To compen-
sate for eliminating them from the language, we make the
extra arguments into fields of the visiting class. When we
wish to invoke the visitor recursively but supply new extra
arguments, we replace this (which would use the old fields)
with the creation of a new visitor, passing the extra argu-
ments to the constructor to be used as fields. Since we will
not use this in the language from here on, we eliminate it

also. A casualty of this is that class extension is less ex-
pressive, since this will always be replaced by an instance
of the class defining that method rather than by a subclass
on which this method may have been called. That does not
come to play in our example. Observe the new code frag-
ment:

EncodingVisitor : visitor {

...

(Application ->

let t1 = (new EncodingVisitor[v, cl]

(acceptor new GetExpr1[])),

t2 = (new EncodingVisitor[

v, (t1 new GetClassList[])]

(acceptor new GetExpr2[]))

in

new TargetGoal[(t2 new GetClassList[]),

new Invocation[

(t1 new GetExpr[]),

(t2 new GetExpr[])]]

end)

...

}

2.5 Removing let expressions
As a final step, we remove let expressions and non-field

local variables. This is a simple matter of inlining:

EncodingVisitor : visitor {

...

(Application ->

new TargetGoal[

((new EncodingVisitor[

v,

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetClassList[])]

(acceptor new GetExpr2[]))

new GetClassList[]),

new Invocation[

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetExpr[]),

((new EncodingVisitor[

v,

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetClassList[])]

(acceptor new GetExpr2[]))

new GetExpr[])]]

)

...

}

As a final note, to attain a core calculus we also eliminate
gensym and the unique identifiers it produces. This does not
affect the fragment shown, but it is an important part in the
full program.



3. THE VISITOR CALCULUS

3.1 Syntax and semantics
To describe the computation, we formally define values:
v ::= new t[v] values

To describe the operational semantics, we use the notion
of a context, i.e., an expression with a hole in it. The
metavariable X ranges over evaluation contexts, and the
notation X〈e〉 means context X with its hole filled with e.

Operational Semantics:

find-method(c, t1, t2) = (t 7→ e)
fields(c, t1) = x

(c, X〈(new t1[v1] new t2[v2])〉 →
(c, X〈e {acceptor, x := new t2[v2]/v1}〉

(6)

Field lookup:

fields(c, Visitor) = ∅ (7)

t : t′{x; m} ∈ c
fields(c, t′) = y

fields(c, t) = x, y
(8)

Method lookup:

t1 : t′{x; m} ∈ c (t2 7→ e) ∈ m
match(c, t1, t2) = (t2 7→ e)

(9)

t1 : t′{x; m} ∈ c ∀(τ 7→ η) ∈ m
τ 6= t2

match(c, t′, t2) = (t′′ 7→ e)
match(c, t1, t2) = (t′′ 7→ e)

(10)

t 6= visitor

match(c, visitor, t) = • (11)

match(c, t1, t2) = (t2 7→ e)
find-method(c, t1, t2) = (t2 7→ e)

(12)

t2 : t′{x; m} ∈ c
match(c, t1, t2) = •

find-method(c, t1, t
′) = (t′′ 7→ e)

find-method(c, t1, t2) = (t′′ 7→ e)

(13)

We have been claiming that under the VisiCalc semantics
no message not understood or message ambiguous error could
ever occur. We now verify that claim. We use t : t′ to
indicate that t is a child class of t′.

Lemma 3.1. find-method will always return a method.

Proof. Suppose t and s are classes, and we want to find
a method for find-method(t, s,) . There are finite sequences
of classes

Visitor = t0, t1, t2, ..., tn = t ti : ti−1, 0 < i ≤ n

Visitor = s0, s1, s2, ..., sm = s sj : sj−1, 0 < j ≤ m

If the class t has a method that matches s, we can apply
(9) and (12) to derive a solution:

(9)(12)

Otherwise, if one of ti, 0 < i < n has a method that
matches s, we can apply (10) repeatedly. Generalizing this
with the previous case (i.e., 0 < i ≤ n), we have the deriva-
tion

(9)(10)+(12)

If no parent of t has a match for s, then we can apply
(11) and repeatedly (10) to derive match(c, t, s) = •. This
is part of what we need to apply (13):

(11)(10)...(13)

The other part needed is a result for find-method(t, sm−1,)
, which we get by applying this lemma recursively. We
know this process will terminate because match(c, t0, s0) =
match(c, visitor, visitor) = (visitor 7→ acceptor). Hence
for some n ≥ 0 there is a derivation for a result of find-method
that can be described by

((11)(10)+)n(9)(10)+(12)(13)n

2

We define the depth of two classes t and s in c, ∆(c, t, s)
to be the n from the proof of Lemma 3.1.

Lemma 3.2. match returns no more than one method.

Proof. The two rules which return a method for match(c, t, s),
(9) and (10), have mutually exclusive conditions. 2

Lemma 3.3. match returns • iff it does not return a method.

Proof. Suppose t and s are classes and we want to find
a result for match(c, t, s).

If t = visitor, then if s = visitor we can apply (9) for
(Visitor 7→ acceptor); otherwise we can apply (11) for •.
These rules are mutually exclusive.

Otherwise, if t contains a match for s we can apply (9)
to get a method, and we cannot apply (10). If t does not
contain a match for s, we cannot apply (9), but we can
apply (10) for another call to match. By induction, that call
to match returns • iff it does not return a method. 2

Lemma 3.4. find-method returns no more than one method.

Proof. Lemma 3.3 makes the conditions of (12) and (13)
mutually exclusive. Lemma 3.2 makes the lemma hold for
(11). Induction makes it hold for (12). 2

Theorem 3.5. For every ordered pair of classes, find-method
returns exactly one method.

Proof. Follows from Lemmas 3.1 and 3.4. 2



3.2 Type system
VisiCalc is “almost” untyped. We do not need types to

statically check invocations, for example, because the se-
mantics ensures an applicable method will always be sound.
We do need one thing to guarantee that a program will run
correctly— every creation must have the appropriate num-
ber of arguments. Therefore VisiCalc does have a mini-
mal type system, but it is enough to prove preservation and
progress theorems. A typing environment is not a mapping,
but a single type, the “current” type in the type derivation
(or the environment can be empty, ∅). We use the metavari-
able B to range over types and the empty set, where as t
ranges over types only. Typing rules for VisiCalc:

x ∈ fields(c, t)
c, t ` x

(14)

c, B ` e1 c, B ` e2

c, B ` e1 e2
(15)

c, t ` acceptor (16)

c, B ` e | e |=| fields(c, t) |
c, B ` new t[e]

(17)

c, t ` e
c, t ` (t′ 7→ e)

(18)

c, t ` m
c ` t : t′{x; m} (19)

c, ∅ ` e ∀c ∈ c c, ∅ ` c
c ` c e

(20)

Note that (17), if e is taken to be empty, implies that
c, ∅ ` new t[ ].

Lemma 3.6. [Term substitution] If x = fields(c, t), c, t `
e, c, ∅ ` d, and c, ∅ ` f , then c, ∅ ` e{acceptor, b := f, d}.

Proof. By induction on the derivation of c, t ` e. The
only place where t is used are (14) and (16). t is not used at
all in typing the expression after the replacement has taken
place. 2

Theorem 3.7. [Preservation] If c, ∅ ` e and (c, k〈e〉) →
(c, k〈e′〉) then c, ∅ ` e′.

Proof. Straightforward, using Rule (15) and Lemma 3.6.
2

Theorem 3.8. [Progress.] If e is closed and c, ∅ ` e,
then either e is a value or there exists e′ such that (c, e) →
(c, e′).

Proof. Since e is closed, it cannot contain e = x or e =
acceptor.

If all subexpressions are of the form new[e], then e must
be a value.

The only remaining case is if there is a subexpression in
the form (e1 e2), that is, e = X〈(e1 e2)〉 for some context
X. If either of them are not values (say e1), the by induc-
tion (c, e1) → (c, e′1) for some e′1, and then (c, X〈e1〉) →
(c, X〈e′1〉). If both are values, then by (6), (c, (e1 e2)) →
(c, e′) for some e′, and (c, X〈(e1 e2)〉) → (c, X〈(e2 e2)〉). 2

Lemma 3.9. If (c, e) → (c, e′) and e is closed, then e′ is
closed.

Proof. Straightforward. 2

We say that an expression e is stuck if it is not a value
and there is no expression e′ such that (c, e) → (c, e′). A
program goes wrong if it evaluates to a stuck expression.

Theorem 3.10. Well-typed programs cannot go wrong.

Proof. Straightforward, using Theorems 3.7 and 3.8, and
Lemma 3.9. 2

4. FROM VISITORS TO OBJECTS
We have demonstrated the connection between functions

and visitors, specifically that a lambda term is translated
into a new class and a creation of an instance of that class.
We now link the visitor calculus with an object-oriented sys-
tem.

4.1 Featherweight Java
As our target language, we use Featherweight Java with-

out casts. We have removed casts because they are not
needed for the translation of the visitor calculus. A Feath-
erweight Java program is a list of classes and a main ex-
pression. The syntax and semantics of Featherweight Java
without casts is in Figure 2. Note that this last semantics
rule requires that the parameters to a function call be val-
ues. This differs from the standard FJ definition, enforcing
call-by-value semantics. The typing rules are in Figure 3

4.2 Translation from visitors to objects
We now present a translation from VisiCalc to Feather-

weight Java, see Figure 4. We use J(c, e)Kv to stand for the
FJ classes and main expression that result from translating
the VC program (c, e). JeKv stands for the translation of an
expression, and similarly J(t 7→ e)Kv stands for the transla-
tion of a method. JcKc

v stands for the translation of a class
in the context of a list of classes, and this is extended for
the entire list of classes in the expected way. Finally, JcKvm
creates a special method for a class; this is also extended for
a list of classes.

At the most simple level, a field reference is translated to a
field reference, a creation is translated into creation, etc. A
class, moreover, is translated into a class. This implies a very
close correlation between the two languages and an isomor-
phism between the two class hierarchies. Since VisiCalc has
no non-local field references, the translated program will not
either, even though Featherweight Java allows them. Thus
all fields are translated as indirections from this in rule
(40). Since all methods are translated into methods with
one argument, named acceptor, rule (43) translates param-
eter references into parameter references, even though the
Featherweight Java syntax does not distinguish them from
field references.



P ::= (CD, η) programs
η ::= expressions

x variable references
| η.f field references
| new C(η) creations
| η.m(η) method calls

CD ::= class C extends C { C f ; K M} classes

K ::= C(C f) { super(f); this.f = f ; } constructors
µ ::= C m(C x) { return η; } methods
v ::= new C(v) values

Auxiliary definitions useful for operational semantics:
Field Lookup:

fields-fj (CD, Object) =
(21)

CD(C) = class C extends D {C f ; K µ} fields-fj (CD, D) = D g

fields-fj (CD, C) = D g, C f
(22)

Method Type Lookup:

CD(C) = class C extends D {C f ; K µ} B0 m(B x){ return η; } ∈ µ

mtype(CD, C, m) = B → B0

(23)

CD(C) = class C extends D{ C f ; K µ} m not defined in µ

mtype(CD, C, m) = mtype(CD, D, m)
(24)

Method Body Lookup:

CD(C) = class C extends D{ Cf ; K µ} B0 m(Bx){ return η; } ∈ µ

mbody(CD, C, m) = (x, η)
(25)

CD(C) = class C extends D {C f ; K µ} m not defined in µ

mbody(CD, C, m) = mbody(CD, D, m)
(26)

Valid Method Overriding:

mtype(CD, D, m) = D → D0 implies C = D and C0 = D0

override(CD, D, m, C → C0)
(27)

Operational semantics:

fields-fj (CD, C) = Cf

(CD, X〈new C(e).fi〉) 7→ (CD, X〈ei〉)
(28)

mbody(CD, C, m) = (x, e0)

(CD, X〈new C(e).m(v)〉) 7→ (CD,X〈e0{this, x := new C (e), v}〉)
(29)

Figure 2: The syntax and semantics for Featherweight Java without casts.

The most interesting part of this translation is how double
dispatch is implemented since Featherweight Java does not
support it. As is common in the visitor pattern, calling a
visit method is actually a handshake requiring two method
calls, one call to the visit method and one to the accept
method. The accept method is necessary to select the cor-
rect visit method in the visitor. Thus an invocation in Visi-
Calc is translated in rule (42) to the call of a method in the
acceptor named accept. As we see in rule (45), each class
has a method so named which is selected by Featherweight
Java’s single dispatching and which calls an appropriate visit
method, named for that class; such a method is translated

by rule (44). Featherweight Java’s single dispatching will
now select this method.

But what if no appropriate method exists in the visitor
class or any of its ancestors? The VisiCalc semantics then
seek an appropriate visit method for the parent class of the
acceptor. To implement this, the Visitor class, which tops
the hierarchy, has a visit method for each class which will
be selected by single dispatch if no other method is found.
This method simply calls the visit method appropriate for
the acceptor’s parent class. This is shown in rules (46) and
(47).

Let us revisit the example from section 2, where we trans-



Subtyping:

CD ` C <: C
(30)

CD ` C <: D CD ` D <: E

CD ` C <: E
(31)

CD(C) = class C extends D{. . .}
CD ` C <: D

(32)

Expression Typing:

CD; Z ` x ∈ Z(x)
(33)

CD; Z ` η0 ∈ C0 fields-fj (CD, C0) = C f

CD; Z ` η0.f ∈ Ci

(34)

fields-fj (CD, C) = D f CD; Z ` η ∈ E CD ` E <: D

CD; Z ` new C(η) ∈ C
(35)

CD; Z ` η0 ∈ C0 mtype(CD, C0, m) = D → C CD; Z ` η ∈ C CD ` C <: D

CD; Z ` η0.m(η) ∈ C
(36)

Method Typing:

CD; this : C, x : C ` η0 ∈ E0

CD ` E0 <: C0

CD(C) = class C extends D {. . .}
override(CD, D, m, C → C0)

CD ` C0 m(C x) {return η0; } OK in C
(37)

Class Typing:

CD ` µ OK in C fields-fj (CD, D) = D g K = C(D g, C f){ super (g); this.f = f ; }
CD ` class C extends D{C f ; Kµ} OK

(38)

Program Typing:

CD ` CD OK CD;` η ∈ C

` (CD, η) ∈ C
(39)

Figure 3: Typing rules for Featherweight Java without casts

lated the apply function, λf.λx.fx, to the visitor calculus.
If we translate that visitor program to Java using the above
translation, we get:

class visitor extends Object {

visitor() {}

visitor accept(visitor x) {

return x.visit_visitor(this);

}

visitor visit_visitor(visitor acceptor) {

return acceptor;

}

visitor visit_cla1(cla1 acceptor) {

return this.visit_visitor(acceptor); }

visitor visit_cla0(cla0 acceptor) {

return this.visit_visitor(acceptor); }

}

class cla0 extends visitor {

visitor f;

cla0 (visitor f){

super();

this.f = f;

}

Visitor accept(Visitor x) {

return x.visit_cla0(this);

}

visitor visit_visitor(visitor acceptor) {

return acceptor.accept(f);

}

}

class cla1 extends visitor {

cla1 (){

super();

}

Visitor accept(Visitor x) {

return x.visit_cla1(this);

}

visitor visit_visitor(visitor acceptor) {



JxKv = this.x (40)

Jnew t[e]Kv = new t(JeKv) (41)

J(e1 e2)Kv = Je2Kv.accept(Je1Kv) (42)

JacceptorKv = acceptor (43)

J(t 7→ e)Kv = Visitor visit t(t acceptor){return JeKv; } (44)

Jt : t′{x; m}Kc
v = class t extends t′ {

Visitor x;
t (Visitor x,fields(c, t′)) {super(y); this.x = x; }
Visitor accept(Visitor x) { return x.visit t(this); }
JmKv

}

(45)

Jt : t′{x; m}Kvm = Visitor visit t(Visitor acceptor){ return this.visit t′(acceptor)} (46)

J(c, e)Kv = class Visitor extends Object {
Visitor() { }
Visitor accept(Visitor x){ return x.visit Visitor(this); }
Visitor visit Visitor(Visistor acceptor) { return acceptor; }
JcKvm

}
JcKc

v
JeKv

(47)

Figure 4: Translation of the visitor calculus to Java

return new cla0(acceptor);

}

}

new cla1()

Notice that visitor has visit methods for each of the
two classes. Class cla0 represents λx.fx, and class cla1

represents λf.λx.fx. Class cla0 has a visit method to apply
its argument to its field, and class cla1 has a visit method
which constructs a new cla0.

4.3 Correctness
First, we need some concept of translating typing environ-

ments in VisiCalc to typing environments in Featherweight
Java. An empty environment translates to an empty envi-
ronment, and an environment containing a class translates
to a mapping of the fields in that class each to class Visitor:

J∅Kv = ∅ JtKv = fields(t) : Visitor

Lemma 4.1. If c, B ` e then JcKc
vJBKv ` JeKv : Visitor.

Proof. By case analysis:

• If e = x, then (14) allows only B = t and x ∈ fields(t).
By (40), we have JxKv = this.x. Now, JtKv = fields(t) :
Visitor, and since we must be in a class of type t,
this : t. By (34), JcKc

v, JBKv ` JeKv : Visitor.

• If e = (e1 e2), then JcKc
v, JBKv ` Je1Kv : Visitor

and JcKc
vJBKv ` Je2Kv : Visitor by induction. By

(42), Je1 e2Kv = Je1Kv.accept(Je1Kv). From (45) and
(47), we can be assured that mtype(accept, Visitor) :
Visitor → Visitor. Then, by (36), JcKc

v, JBKv `
Je1Kv.accept(Je2Kv) : Visitor.

• If e = acceptor, then JeKv = acceptor. Since only
(16) will type acceptor and it requires the environ-
ment to be nonempty, JBKv will also be nonempty.
Therefore we must have found this expression in the
body of a method. By (43), we have JacceptorKv =
acceptor. By (44), there’s a parameter, namely acceptor.
By (33), JcKc

v, JBKv ` JeKv : Visitor.

• If e = new t[e], then by induction we know that JcKc
v, JBKv `

JeKv : Visitor. Moreover, by (41), Jnew t[e]Kv =
new t(JeKv). By (35), new t(e) ∈ t. Since there is
no circularity in the type system, we can be assured
that all classes are ultimately derived from Visitor.
Hence t <: Visitor.

2

Lemma 4.2. If c ` c then JcKc
v ` JCKv OK.

Proof. Suppose c = t : t′ {x; m }. According to (38),
in order for JcKc

v to type check, two things must be satisfied:
items in the constructor must match the fields in the class
and the inherited fields, and all the methods must be OK.
The first condition is met explicitly by (45). As for methods,
there are two types: the accept method that each class has
and the methods that are a result of translating the methods
of the source class.

For the accept method, the parameter x has type Visitor,
which by (47) will have a visit t method with return type
Visitor. Thus it is OK.

For the other methods,
J(t′ 7→ e)Kv =

Visitor visit t′(t′ acceptor) { return JeKv; }.
We know from Lemma 4.1 that JcKc

v, JtKv ` JeKv : Visitor,
so this is OK. 2



Theorem 4.3. [Type Preservation.] If c ` (c, e) then
` J(c, e)Kv OK.

Proof. From Lemmas 4.1 and 4.2. 2

Our goal is to say that if a VisiCalc program execution
takes a step to a new state, then the encoding of that pro-
gram into Featherweight Java takes a step or steps to be-
come the encoding of the resulting state on the VisiCalc
side.

Theorem 4.4. [Behavior Preservation.] If p → p′

then JpKv →∗ Jp′Kv.

Proof. If p → p′ then p is not a value. Hence p =
(c, X〈(new t1[v1] new t2[v2])〉) for some c, t1, v1, t2, v2. The
desired result now follows from the following property:

J(c, X〈(new t1[v1] new t2[v2])〉)Kv →n

J(c, X〈e{acceptor, x := new t2[v2], v1〉)Kv, where
n = ∆(c, t1, t2) + 2, e = find-method(c, t1, t2).

To see that the property is true, first note that
(c, X〈(new t1[v1] new t2[v2])〉) →
(c, X〈e{acceptor, x := new t2[v2], v1〉),

by (6).
Second,
J(c, X〈(new t1[v1] new t2[v2])〉)Kv =
(JcKv, JXKv〈Jnew t2[v2]Kv.accept(Jnew t1[v1]Kv)〉).

Distributing the encoding across the context is valid because
of the composability of the encoding. Then,

(JcKv, JXKv〈Jnew t2[v2]Kv.accept(Jnew t1[v1]Kv)〉) →
(JcKv, JXKv〈Jnew t1[v1]Kv.visit t2(Jnew t2[v2]Kv)〉),

according to (47); this is translational overhead due to dy-
namic double dispatch.

From this point on, we match the program progress on the
Featherweight Java side with the derivation of a result for
find-method on the VisiCalc side. Recall that in the proof
of Lemma 3.1 we described the derivation of the result of
find-method by

((11)(10)+)n(9)(10)+(12)(13)n

An application of (10) corresponds to the second FJ method
body lookup rule, when the parent class is searched for a
matching method. The (9) (12) pair corresponds to (25). By
(45) and (44), each VisiCalc method will have an equivalent
Featherweight Java method for this, and this corresponds
to one step, a method call, on the Featherweight Java side.
A (11) (13) pair represents on the VisiCalc side when no
matching method is found in the hierarchy, and we need
instead to search for a match for the parent class of the ac-
ceptor; on the Featherweight Java side, (46) and (47) ensure
that a method to match will be found in class Visitor, and
its body is a call a visit method on a parent class, another
step.

Thus the overhead has requires one step, the (9) (12) pair
requires one step, and each (11) (13) pair will also require a
step. Hence n + 2 steps. 2

5. CONCLUSION
Our results provide a foundation for visitor-oriented pro-

gramming. Future work includes (1) proving the correctness
of the translation from the λ-calculus to the visitor calculus,
(2) developing more programming idioms for visitor-oriented
programming, and (3) investigating a visitor calculus with
symmetric double dispatching, including a type system for
preventing message ambiguous errors, with inspiration from
[1].
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APPENDIX

A. EXAMPLE PERIPATON PROGRAM

A.1 Using all language features
In this appendix we give the full code for the program

used in the examples of section 2. The list of classes is made
up of three parts. The first part contains classes to represent
the abstract syntax trees of the source and target languages.
These contain no functionality, just data. The second sec-
tion has two classes to implement lists (List, which stands
for a null list, and NonEmptyList, which contains a head
item, car, and the rest of the list, cdr), and several visitors
to perform basic list operations. The third section contains
the translator proper, a visitor that dispatches on the three
types of expression in the source language (the code frag-
ment observed earlier is taken from this); there are also two
auxiliary visitors to collect free variables. At the end is a
main expression which generates a term in the source gram-
mar and feeds it into an instance of the encoding visitor.

## Section 1: Abstract syntax trees

# Source language

Goal : visitor {

expr;

}

Abstraction : visitor {

id;

expr;

}

Application : visitor {

expr1;

expr2;

}

LambdaIdentifier : visitor {

uid;

}

# Target language

TargetGoal : visitor {

classList;

expr;

}

Class : visitor {

name;

parent;

fieldList;

methodList;

}

Method : visitor {

type;

expr;

}

Invocation : visitor {

expr1;

expr2;

}

Creation : visitor {

name;

exprList;

}

AcceptorKW : visitor { }

VisitorKW : visitor { }

VisitorIdentifier : visitor {

uid;

}

## Section 2: Lists and list operations

# null list

List : visitor { }

# Non-null list with head and tail

NonEmptyList : visitor {

car;

cdr;

}

# Visitor to replace all instances of

# a certain item in a list with a new

# item. It is created with an old object

# and a replacement. Given an empty list,

# it returns it, and given a non empty

# list, it compares the unique identifier

# of the head to the unique identifier

# of the old item to determine whether

# or not to replace it, working recursively

# on the tail of the list.

ListItemReplacer : visitor {

old;

replacement;

(List -> acceptor)

(NonEmptyList ->

new NonEmptyList[if {{acceptor}.car}.uid

= {old}.uid

then replacement

else old,

(this {acceptor}.cdr)])

}

# Visitor to take two lists, treating

# them as sets and producing a new list

# as the union of the two lists. One

# list is given as the dispatching parameter,

# the other extra. If the dispatching parameter

# is null, the extra is returned. Otherwise

# each item in the dispatching list are

# added to the extra list.

ListUnioner : visitor {

(List <list> -> list)

(NonEmptyList <list> ->

(this {acceptor}.cdr

<(new ListItemAdder[]

list <{acceptor}.car>)>))

}



# Visitor to take two lists, treating

# them as sets and producing a new list

# as the intersection of the two lists.

# One list is given as the dispatching

# parameter, the other extra. If the

# dispatching parameter is null, the

# dispatching (null) is returned. Otherwise

# return the union of intersecting the first

# item of the dispatching list and the extra

# list with the intersection of the tail

# of the dispatching list and the extra.

ListIntersector : visitor {

(List <list> -> acceptor)

(NonEmptyList <list> ->

(new ListUnioner[]

(new ListItemIntersector[] list

<{acceptor}.car>)

<(this {acceptor}.cdr <list>)>))

}

# Visitor to add an item uniquely to

# a list. The list is given as a dispatching

# parameter, the item as extra. Given an

# empty list, return a list with only the

# item. Given a non-empty list, if the item

# is equal (in terms of unique id) to the head

# of the list, do not add it; otherwise,

# apply this recursively to the tail of

# the list.

ListItemAdder : visitor {

(List <item> -> new NonEmptyList[item,

new List[]])

(NonEmptyList <item> ->

if {item}.uid = {{acceptor}.car}.uid

then acceptor

else new NonEmptyList[item, acceptor])

}

# Visitor to intersect a single item

# with a list. The list is given as a

# dispatching argument, the item is

# extra. If the list is empty, return

# it (being null). Otherwise, if the item

# matches the head of the list, return a

# list with only that item; if it does not

# match, apply this recursively to the

# tail.

ListItemIntersector : visitor {

(List <item> -> acceptor)

(NonEmptyList <item> ->

if {item}.uid = {{acceptor}.car}.uid

then new NonEmptyList[item, new List[]]

else (this {acceptor}.cdr <item>))

}

## Section 3: Translator proper

# The algorithm is explained in Section 4

EncodingVisitor : visitor {

(Goal -> (this {acceptor}.expr

<new LambdaIdentifier[gensym],

new List[]>))

(Abstraction <v, cl> ->

let t1 = (this {acceptor}.expr

<{acceptor}.id, cl>),

t2 = new VisitorIdentifier[gensym],

t3 = (new FreeVariableVisitor[

new List[]]

{acceptor}.expr),

m = new Method[new VisitorKW[],

{t1}.expr],

ml = new NonEmptyList[m, new List[]],

c = new Class[t2, new VisitorKW[],

t3, ml],

vl = (new ListItemReplacer[

new AcceptorKW[], v] t3)

in

new TargetGoal[new NonEmptyList[

c, {t1}.classList],

new Creation[t2, vl]]

end)

(Application <v, cl> ->

let t1 = (this {acceptor}.expr1 <v, cl>),

t2 = (this {acceptor}.expr2

<v, {t1}.classList>)

in

new TargetGoal[{t2}.classList,

new Invocation[{t1}.expr,

{t2}.expr]]

end)

(LambdaIdentifier <v, cl> ->

if {v}.uid = {acceptor}.uid

then new TargetGoal[cl, new AcceptorKW[]]

else new TargetGoal[cl,

new VisitorIdentifier[

{acceptor}.uid]])

}



# Visitor to collect free variables.

# The expression is given as the dispatching

# argument, a list of bound variables as

# extra. For an abstraction, the free variables

# are the free variables of the body, with the

# the variable bound there added to the list.

# For an application, the free variables are

# the union of the free variables of the two

# subexpressions. For an identifier, the

# it is the only freevariable if it cannot be

# found in the bound variables, none otherwise.

FreeVariableVisitor : visitor {

(Abstraction <boundvars> ->

(this {acceptor}.expr

<new NonEmptyList[{acceptor}.id,

boundvars]>))

(Application <boundvars> ->

(new ListUnioner[] (this {acceptor}.expr1

<boundvars>)

<(this {acceptor}.expr2 <boundvars>)>))

(LambdaIdentifier <boundvars> ->

(new FreeVariableHelper[acceptor]

(new ListIntersector[new NonEmptyList[

acceptor,

new List[]]]

boundVars)))

}

# Visitor to invert the result of intersection,

# needed by FreeVariableVisitor. Given a

# non-empty list, return an empty one. Given an

# empty list, return a list with only the

# variable given as a field.

FreeVariableHelper : visitor {

var;

(NonEmptyList -> new List[])

(List -> new NonEmptyList[var, new List[]])

}

# Main expression

# Execute an encoding visitor on

# (lambda (x) (lambda (y) (x y)))

(new EncodingVisitor[]

let x = gensym,

y = gensym

in

new Goal[

new Abstraction[

new LambdaIdentifier[x],

new Abstraction[

new LambdaIdentifier[y],

new Application[

new LambdaIdentifier[x],

new LambdaIdentifier[y]]]]]

end)

Running this with the interpreter we have implemented
produces

new TargetGoal [

new NonEmptyList [

new Class [

new VisitorIdentifier[new Uid4[]],

new VisitorKW[],

new List[],

new NonEmptyList[

new Method[

new VisitorKW[],

new Creation[

new VisitorIdentifier[

new Uid3[]],

new NonEmptyList[

new AcceptorKW[],

new List[]]]],

new List[]]],

new NonEmptyList[

new Class[

new VisitorIdentifier[

new Uid3[]],

new VisitorKW[],

new NonEmptyList[

new VisitorIdentifier[

new Uid0[]],

new List[]],

new NonEmptyList[

new Method[

new VisitorKW[],

new Invocation[

new

VisitorIdentifier[

new Uid0[]],

new AcceptorKW[]]],

new List[]]],

new List[]]],

new Creation [

new VisitorIdentifier[new Uid4[]],

new List[]]]

A.2 Without non-local field reference
Here is the program with non-local field references re-

moved.

## Section 1: Abstract syntax trees

# Source language

Goal : visitor {

expr;

(GetExpr -> expr)

}

Abstraction : visitor {

id;

expr;

(GetId -> id)

(GetExpr -> expr)

}



Application : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

LambdaIdentifier : visitor {

uid;

(GetUid -> uid)

}

# Target language

TargetGoal : visitor {

classList;

expr;

(GetClassList -> classList)

(GetExpr -> expr)

}

Class : visitor {

name;

parent;

fieldList;

methodList;

(GetName -> name)

(GetParent -> parent)

(GetFieldList -> fieldList)

(GetMethodList -> methodList)

}

Method : visitor {

type;

expr;

(GetType -> type)

(GetExpr -> expr)

}

Invocation : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

Creation : visitor {

name;

exprList;

(GetName -> name)

(GetExprList -> exprList)

}

AcceptorKW : visitor { }

VisitorKW : visitor { }

VisitorIdentifier : visitor {

uid;

(GetUid -> uid)

}

# Getter classes for abstract syntax classes

GetExpr : visitor {}

GetId : visitor {}

GetExpr1 : visitor {}

GetExpr2 : visitor {}

GetUid : visitor {}

GetClassList : visitor {}

GetName : visitor {}

GetParent : visitor {}

GetFieldList : visitor {}

GetMethodList : visitor {}

GetType : visitor {}

GetExprList : visitor {}

# Lists

List : visitor { }

NonEmptyList : visitor {

car;

cdr;

(GetCar -> car)

(GetCdr -> cdr)

}

## Section 2: lists and list operations

# Getter classes for lists

GetCar : visitor {}

GetCdr : visitor {}

# List operations

ListItemReplacer : visitor {

old;

replacement;

(List -> acceptor)

(NonEmptyList ->

new NonEmptyList[if ((acceptor

new GetCar[])

new GetUid[]) =

(old new GetUid[])

then replacement

else old,

(this (acceptor

new GetCdr[]))])

}

ListUnioner : visitor {

(List <list> -> list)

(NonEmptyList <list> ->

(this (acceptor new GetCdr[])

<(new ListItemAdder[] list

<(acceptor new GetCar[])>)>))

}



ListIntersector : visitor {

(List <list> -> acceptor)

(NonEmptyList <list> ->

(new ListUnioner[]

(new ListItemIntersector[] list

<(acceptor new GetCar[])>)

<(this (acceptor new GetCdr[])

<list>)>))

}

ListItemAdder : visitor {

(List <item> -> new NonEmptyList[item,

new List[]])

(NonEmptyList <item> ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then acceptor

else new NonEmptyList[

(acceptor new GetCar[]),

(this (acceptor new GetCdr[])

<item>)])

}

ListItemIntersector : visitor {

(List <item> -> acceptor)

(NonEmptyList <item> ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then new NonEmptyList[item, new List[]]

else (this (acceptor new GetCdr[]) <item>))

}

## Section 3: Translator proper

EncodingVisitor : visitor {

(Goal -> (this (acceptor new GetExpr[])

<new LambdaIdentifier[gensym],

new List[]>))

(Abstraction <v, cl> ->

let t1 = (this (acceptor new GetExpr[])

<(acceptor new GetId[]), cl>),

t2 = new VisitorIdentifier[gensym],

t3 = (new FreeVariableVisitor[]

acceptor

<new List[]>),

m = new Method[new VisitorKW[],

(t1 new GetExpr[])],

ml = new NonEmptyList[m, new List[]],

c = new Class[t2, new VisitorKW[],

t3, ml],

nv = new VisitorIdentifier[

(v new GetUid[])],

vl = (new ListItemReplacer[

nv, new AcceptorKW[]] t3)

in

new TargetGoal[new NonEmptyList[

c,

(t1

new GetClassList[])],

new Creation[t2, vl]]

end)

(Application <v, cl> ->

let t1 = (this (acceptor new GetExpr1[])

<v, cl>),

t2 = (this {acceptor}.expr2

<v, (t1 new GetClassList[])>)

in

new TargetGoal[(t2 new GetClassList[]),

new Invocation[

(t1 new GetExpr[]),

(t2 new GetExpr[])]]

end)

(LambdaIdentifier <v, cl> ->

if (v new GetUid[]) =

(acceptor new GetUid[])

then new TargetGoal[cl, new AcceptorKW[]]

else new TargetGoal[

cl,

new VisitorIdentifier[

(acceptor new GetUid[])]])

}



FreeVariableVisitor : visitor {

(Abstraction <boundvars> ->

(this (acceptor new GetExpr[])

<new NonEmptyList[

(acceptor new GetId[]),

boundvars]>))

(Application <boundvars> ->

(new ListUnioner[]

(this (acceptor new GetExpr1[])

<boundvars>)

<(this (acceptor new GetExpr2[])

<boundvars>)>))

(LambdaIdentifier <boundvars> ->

(new FreeVariableHelper[acceptor]

(new ListIntersector[]

new NonEmptyList[acceptor, new List[]]

<boundvars>)))

}

FreeVariableHelper : visitor {

var;

(NonEmptyList -> new List[])

(List ->

new NonEmptyList[new VisitorIdentifier[

(var new GetUid[])],

new List[]])

}

# Main expression

(new EncodingVisitor[]

let x = gensym,

y = gensym

in

new Goal[

new Abstraction[

new LambdaIdentifier[x],

new Abstraction[

new LambdaIdentifier[y],

new Application[

new LambdaIdentifier[x],

new LambdaIdentifier[y]]]]]

end)

A.3 Without extra arguments
We now rewrite the program without non-dispatching,

extra arguments. One quirk we have to live with is that
EncodingVisitor has fields that must be filled even if they
are not yet used. In the main expression, we fill them with
dummy values.

## Section 1: Abstract syntax tree

# Source language

Goal : visitor {

expr;

(GetExpr -> expr)

}

Abstraction : visitor {

id;

expr;

(GetId -> id)

(GetExpr -> expr)

}

Application : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

LambdaIdentifier : visitor {

uid;

(GetUid -> uid)

}

# Target language

TargetGoal : visitor {

classList;

expr;

(GetClassList -> classList)

(GetExpr -> expr)

}

Class : visitor {

name;

parent;

fieldList;

methodList;

(GetName -> name)

(GetParent -> parent)

(GetFieldList -> fieldList)

(GetMethodList -> methodList)

}

Method : visitor {

type;

expr;

(GetType -> type)

(GetExpr -> expr)

}

Invocation : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

Creation : visitor {

name;

exprList;

(GetName -> name)

(GetExprList -> exprList)

}

AcceptorKW : visitor { }

VisitorKW : visitor { }

VisitorIdentifier : visitor {

uid;

(GetUid -> uid)

}



# Getter classes for abstract syntax classes

GetExpr : visitor {}

GetId : visitor {}

GetExpr1 : visitor {}

GetExpr2 : visitor {}

GetUid : visitor {}

GetClassList : visitor {}

GetName : visitor {}

GetParent : visitor {}

GetFieldList : visitor {}

GetMethodList : visitor {}

GetType : visitor {}

GetExprList : visitor {}

# Lists

List : visitor { }

NonEmptyList : visitor {

car;

cdr;

(GetCar -> car)

(GetCdr -> cdr)

}

## Section 2: lists and list operations

# Getter classes for lists

GetCar : visitor {}

GetCdr : visitor {}

# List operations

ListItemReplacer : visitor {

old;

replacement;

(List -> acceptor)

(NonEmptyList ->

new NonEmptyList[

if ((acceptor new GetCar[])

new GetUid[]) =

(old new GetUid[])

then replacement

else old,

(this (acceptor new GetCdr[]))])

}

ListUnioner : visitor {

list;

(List -> list)

(NonEmptyList ->

(new ListUnioner[

(new ListItemAdder[

(acceptor new GetCar[])]

list)]

(acceptor new GetCdr[])))

}

ListIntersector : visitor {

list;

(List -> acceptor)

(NonEmptyList ->

(new ListUnioner[

(new ListIntersector[list]

(acceptor new GetCdr[]))]

(new ListItemIntersector[(acceptor

new GetCar[])]

list)))

}

ListItemAdder : visitor {

item;

(List -> new NonEmptyList[item, new List[]])

(NonEmptyList ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then acceptor

else new NonEmptyList[

(acceptor new GetCar[]),

(new ListItemAdder[item]

(acceptor new GetCdr[]))])

}

ListItemIntersector : visitor {

item;

(List -> acceptor)

(NonEmptyList ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then new NonEmptyList[item, new List[]]

else (new ListItemIntersector[item]

(acceptor new GetCdr[])))

}



## Section 3: Translator proper

EncodingVisitor : visitor {

v;

cl;

(Goal ->

(new EncodingVisitor[

new LambdaIdentifier[gensym],

new List[]]

(acceptor new GetExpr[])))

(Abstraction ->

let t1 = (new EncodingVisitor[

(acceptor new GetId[]), cl]

(acceptor new GetExpr[])),

t2 = new VisitorIdentifier[gensym],

t3 = (new FreeVariableVisitor[new List[]]

acceptor),

m = new Method[new VisitorKW[],

(t1 new GetExpr[])],

ml = new NonEmptyList[m, new List[]],

c = new Class[t2, new VisitorKW[],

t3, ml],

nv = new VisitorIdentifier[

(v new GetUid[])],

vl = (new ListItemReplacer[

nv, new AcceptorKW[]]

t3)

in

new TargetGoal[

new NonEmptyList[

c, (t1 new GetClassList[])],

new Creation[t2, vl]]

end)

(Application ->

let t1 = (new EncodingVisitor[v, cl]

(acceptor new GetExpr1[])),

t2 = (new EncodingVisitor[

v, (t1 new GetClassList[])]

(acceptor new GetExpr2[]))

in

new TargetGoal[

(t2 new GetClassList[]),

new Invocation[(t1 new GetExpr[]),

(t2 new GetExpr[])]]

end)

(LambdaIdentifier ->

if (v new GetUid[]) =

(acceptor new GetUid[])

then new TargetGoal[cl, new AcceptorKW[]]

else new TargetGoal[

cl, new VisitorIdentifier[

(acceptor new GetUid[])]])

}

FreeVariableVisitor : visitor {

boundvars;

(Abstraction ->

(new FreeVariableVisitor[

new NonEmptyList[(acceptor new GetId[]),

boundvars]]

(acceptor new GetExpr[])))

(Application ->

(new ListUnioner[

(new FreeVariableVisitor[boundvars]

(acceptor new GetExpr2[]))]

(new FreeVariableVisitor[boundvars]

(acceptor new GetExpr1[]))))

(LambdaIdentifier ->

(new FreeVariableHelper[acceptor]

(new ListIntersector[boundvars]

new NonEmptyList[acceptor, new List[]])))

}

FreeVariableHelper : visitor {

var;

(NonEmptyList -> new List[])

(List ->

new NonEmptyList[

new VisitorIdentifier[

(var new GetUid[])], new List[]])

}

# Main expression

(new EncodingVisitor[new List[], new List[]]

let x = gensym,

y = gensym

in

new Goal[

new Abstraction[

new LambdaIdentifier[x],

new Abstraction[

new LambdaIdentifier[y],

new Application[

new LambdaIdentifier[x],

new LambdaIdentifier[y]]]]]

end)

A.4 Without let expressions
Finally, we get rid of let expressions. This is primarily

done by inlining. The one case this doesn’t work is with
gensym, since propagating a single gensym to two occur-
rences of variable x will make those two occurrences different
when we intend them to be equal. To get around this, we
introduce a new class, TermGenerator, which allows us to
store the results of gensym in fields.

## Section 1: Abstract syntax tree

# Source language

Goal : visitor {

expr;

(GetExpr -> expr)

}



Abstraction : visitor {

id;

expr;

(GetId -> id)

(GetExpr -> expr)

}

Application : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

LambdaIdentifier : visitor {

uid;

(GetUid -> uid)

}

# Target language

TargetGoal : visitor {

classList;

expr;

(GetClassList -> classList)

(GetExpr -> expr)

}

Class : visitor {

name;

parent;

fieldList;

methodList;

(GetName -> name)

(GetParent -> parent)

(GetFieldList -> fieldList)

(GetMethodList -> methodList)

}

Method : visitor {

type;

expr;

(GetType -> type)

(GetExpr -> expr)

}

Invocation : visitor {

expr1;

expr2;

(GetExpr1 -> expr1)

(GetExpr2 -> expr2)

}

Creation : visitor {

name;

exprList;

(GetName -> name)

(GetExprList -> exprList)

}

AcceptorKW : visitor { }

VisitorKW : visitor { }

VisitorIdentifier : visitor {

uid;

(GetUid -> uid)

}

# Getter classes for abstract syntax classes

GetExpr : visitor {}

GetId : visitor {}

GetExpr1 : visitor {}

GetExpr2 : visitor {}

GetUid : visitor {}

GetClassList : visitor {}

GetName : visitor {}

GetParent : visitor {}

GetFieldList : visitor {}

GetMethodList : visitor {}

GetType : visitor {}

GetExprList : visitor {}

# Lists

List : visitor { }

NonEmptyList : visitor {

car;

cdr;

(GetCar -> car)

(GetCdr -> cdr)

}

## Section 2: lists and list operations

# Getter classes for lists

GetCar : visitor {}

GetCdr : visitor {}

# List operations

ListItemReplacer : visitor {

old;

replacement;

(List -> acceptor)

(NonEmptyList ->

new NonEmptyList[

if ((acceptor new GetCar[])

new GetUid[]) =

(old new GetUid[])

then replacement

else old,

(this (acceptor new GetCdr[]))])

}

ListUnioner : visitor {

list;

(List -> list)

(NonEmptyList ->

(new ListUnioner[

(new ListItemAdder[

(acceptor new GetCar[])]

list)]

(acceptor new GetCdr[])))

}



ListIntersector : visitor {

list;

(List -> acceptor)

(NonEmptyList ->

(new ListUnioner[

(new ListIntersector[list]

(acceptor new GetCdr[]))]

(new ListItemIntersector[(acceptor

new GetCar[])]

list)))

}

ListItemAdder : visitor {

item;

(List -> new NonEmptyList[item, new List[]])

(NonEmptyList ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then acceptor

else new NonEmptyList[

(acceptor new GetCar[]),

(new ListItemAdder[item]

(acceptor new GetCdr[]))])

}

ListItemIntersector : visitor {

item;

(List -> acceptor)

(NonEmptyList ->

if (item new GetUid[]) =

((acceptor new GetCar[]) new GetUid[])

then new NonEmptyList[item, new List[]]

else (new ListItemIntersector[item]

(acceptor new GetCdr[])))

}

## Section 3: Translator proper

EncodingVisitor : visitor {

v;

cl;

(Goal ->

(new EncodingVisitor[

new LambdaIdentifier[gensym],

new List[]]

(acceptor new GetExpr[])))

(Abstraction ->

new TargetGoal[

new NonEmptyList[

new Class[

new VisitorIdentifier[gensym],

new VisitorKW[],

(new FreeVariableVisitor[

new List[]]

acceptor),

new NonEmptyList[

new Method[

new VisitorKW[],

((new EncodingVisitor[

(acceptor

new GetId[]),

cl]

(acceptor

new GetExpr[]))

new GetExpr[])],

new List[]]],

((new EncodingVisitor[

(acceptor new GetId[]), cl]

(acceptor new GetExpr[]))

new GetClassList[])],

new Creation[

new VisitorIdentifier[gensym],

(new ListItemReplacer[

new VisitorIdentifier[

(v new GetUid[])],

new AcceptorKW[]]

(new FreeVariableVisitor[

new List[]] acceptor))]])

(Application ->

new TargetGoal[

((new EncodingVisitor[

v,

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetClassList[])]

(acceptor new GetExpr2[]))

new GetClassList[]),

new Invocation[

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetExpr[]),

((new EncodingVisitor[

v,

((new EncodingVisitor[v, cl]

(acceptor new GetExpr1[]))

new GetClassList[])]

(acceptor new GetExpr2[]))

new GetExpr[])]]

)



(LambdaIdentifier ->

if (v new GetUid[]) =

(acceptor new GetUid[])

then new TargetGoal[cl, new AcceptorKW[]]

else new TargetGoal[

cl,

new VisitorIdentifier[

(acceptor new GetUid[])]])

}

FreeVariableVisitor : visitor {

boundvars;

(Abstraction ->

(new FreeVariableVisitor[

new NonEmptyList[(acceptor new GetId[]),

boundvars]]

(acceptor new GetExpr[])))

(Application ->

(new ListUnioner[

(new FreeVariableVisitor[boundvars]

(acceptor new GetExpr2[]))]

(new FreeVariableVisitor[boundvars]

(acceptor new GetExpr1[]))))

(LambdaIdentifier ->

(new FreeVariableHelper[acceptor]

(new ListIntersector[boundvars]

new NonEmptyList[acceptor, new List[]])))

}

FreeVariableHelper : visitor {

var;

(NonEmptyList -> new List[])

(List ->

new NonEmptyList[

new VisitorIdentifier[

(var new GetUid[])],

new List[]])

}

# Main expression

TermGenerator : visitor {

x;

y;

(GetTerm ->

new Goal[

new Abstraction[

new LambdaIdentifier[x],

new Abstraction[

new LambdaIdentifier[y],

new Application[

new LambdaIdentifier[x],

new LambdaIdentifier[y]]]]])

}

GetTerm : visitor {}

(new EncodingVisitor[new List[], new List[]]

(new TermGenerator[gensym, gensym] new GetTerm[]))

All these versions of the program produce identical output
in our interpreter.


