Chapter 7 outline:

▶ Introduction, function equality, and anonymous functions (last week Monday)
▶ Image and inverse images (last week Wednesday)
▶ Function properties, composition, and applications to programming (last week Friday)
▶ Cardinality (Monday)
▶ Practice quiz and Countability (Today)
▶ Review (Monday, Apr 18)
▶ Test 3, on Ch 6 & 7 (Wednesday, Apr 20)
Two finite sets \(X \) and \(Y \) have the *the same cardinality* as each other if there exists a one-to-one correspondence from \(X \) to \(Y \).

To use this *analytically*:

Suppose \(X \) and \(Y \) have the same cardinality. Then let \(f \) be a one-to-one correspondence from \(X \) to \(Y \).

\(f \) is both onto and one-to-one.

To use this *synthetically*:

Given sets \(X \) and \(Y \)...

[Define \(f \)] Let \(f : X \to Y \) be a function defined as ...

Suppose \(y \in Y \). *Somehow find \(x \in X \) such that \(f(x) = y \). Hence \(f \) is onto.*

Suppose \(x_1, x_2 \in X \) such that \(f(x_1) = f(x_2) \). *Somehow show \(x_1 = x_2 \). Hence \(f \) is one-to-one.*

Since \(f \) is a one-to-one correspondence, \(X \) and \(Y \) have the same cardinality as each other.
A finite set X has cardinality $n \in \mathbb{N}$, which we write as $|X| = n$, if there exists a one-to-one correspondence from \{1, 2, \ldots n\} to X. Moreover, $|\emptyset| = 0$.
Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as $|X| = n$, if there exists a one-to-one correspondence from $\{1, 2, \ldots n\}$ to X. Moreover, $|\emptyset| = 0$.

Given a set X, if there exists $n \in \mathbb{N}$ and a one-to-one correspondence from $\{1, 2, \ldots n\}$ to X, then X is *finite* and $|X| = n$. Otherwise, X is *infinite*.
Are all infinities equal?

Which is more intuitive to you,

\[|N| = |W| = |Z| = |Q| = |R| \]

or

\[|N| < |W| < |Z| < |Q| < |R| \]
Thm 7.19. \mathbb{W} and \mathbb{N} have the same cardinality.

Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{W}.]
Let $f : \mathbb{W} \to \mathbb{N}$ be defined so that $f(n) = n + 1$.
Suppose $n \in \mathbb{N}$. Then $f(n - 1) = (n - 1) + 1 = n$, so f is onto.
Next suppose $n_1, n_2 \in \mathbb{N}$ such that $f(n_1) = f(n_2)$. Then $n_1 + 1 = n_2 + 1$, and moreover $n_1 = n_2$. Hence f is one-to-one.
Since a one-to-one correspondence exists between \mathbb{W} and \mathbb{N}, the two sets have the same cardinality. \(\Box\)

A set X is *countably infinite* if there exists a one-to-one correspondence from \mathbb{N} to X.
A set is *countable* if it is finite or countably infinite. Otherwise it is *uncountable*.
Thm 7.20. \(\mathbb{Z} \) is countably infinite.

Proof. [We need a one-to-one correspondence from \(\mathbb{N} \) to \(\mathbb{Z} \).]

Let \(f : \mathbb{N} \to \mathbb{Z} \) be defined so that

\[
 f(x) = \begin{cases}
 n \div 2 & \text{if } n \text{ is even} \\
 -(n \div 2) & \text{otherwise}
\end{cases}
\]

Since \(f \) is a one-to-one correspondence, \(\mathbb{Z} \) is countably infinite. \(\Box \)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$1\over 1$</td>
<td>$1\over 2$</td>
<td>$1\over 3$</td>
<td>$1\over 4$</td>
<td>$1\over 5$</td>
<td></td>
</tr>
<tr>
<td>$2\over 1$</td>
<td>$2\over 2$</td>
<td>$2\over 3$</td>
<td>$2\over 4$</td>
<td>$2\over 5$</td>
<td></td>
</tr>
<tr>
<td>$3\over 1$</td>
<td>$3\over 2$</td>
<td>$3\over 3$</td>
<td>$3\over 4$</td>
<td>$3\over 5$</td>
<td></td>
</tr>
<tr>
<td>$4\over 1$</td>
<td>$4\over 2$</td>
<td>$4\over 3$</td>
<td>$4\over 4$</td>
<td>$4\over 5$</td>
<td></td>
</tr>
<tr>
<td>$5\over 1$</td>
<td>$5\over 2$</td>
<td>$5\over 3$</td>
<td>$5\over 4$</td>
<td>$5\over 5$</td>
<td></td>
</tr>
</tbody>
</table>
fun findRoom(busNum, seatNum) =
 let
 fun nextPair(a, b) =
 if a = 1 andalso b mod 2 = 1 then (1, b + 1)
 else if b = 1 andalso a mod 2 = 0
 then (a + 1, 1)
 else if (a + b) mod 2 = 1 then (a + 1, b - 1)
 else (a - 1, b + 1);
 fun findRoomHelper(i, currentPair) =
 if currentPair <> (busNum, seatNum)
 then findRoomHelper(i + 1, nextPair(currentPair))
 else i;
 in
 findRoomHelper(1, (1, 1))
 end;
fun findBusSeat(room) =
 let
 fun nextPair(a, b) =
 if a = 1 andalso b mod 2 = 1 then (1, b + 1)
 else if b = 1 andalso a mod 2 = 0
 then (a + 1, 1)
 else if (a + b) mod 2 = 1 then (a + 1, b - 1)
 else (a - 1, b + 1);
 fun findBusSeatHelper(i, currentPair) =
 if i <> room
 then findBusSeatHelper(i + 1,
 nextPair(currentPair))
 else currentPair;
 in
 findBusSeatHelper(1, (1, 1))
 end;
Thm 7.21. \mathbb{Q}^+ is countably infinite.

So,

$$|\mathbb{N}| = |\mathbb{W}| = |\mathbb{Z}| = |\mathbb{Q}|$$

What about \mathbb{R}?
Thm 7.22. (0, 1) has the same cardinality as \mathbb{R}.

\begin{center}
\begin{tabular}{c|c|c|c|c|c}
 0 & .25 & .5 & .75 & 1 \\
\end{tabular}
\end{center}
Thm 7.23. $(0, 1)$ is uncountable.

Proof. Suppose $(0, 1)$ is countable. Then there exists a one-to-one correspondence $f : \mathbb{N} \to (0, 1)$. We will use f to give names to the all the digits of all the numbers in $(0, 1)$, considering each number in its decimal expansion, where each $a_{i,j}$ stands for a digit.:

\begin{align*}
f(1) &= 0.a_{1,1}a_{1,2}a_{1,3} \ldots a_{1,j} \ldots \\
f(2) &= 0.a_{2,1}a_{2,2}a_{2,3} \ldots a_{2,j} \\
\vdots \\
f(x) &= 0.a_{x,1}a_{x,2}a_{x,3} \ldots a_{x,j} \\
\vdots
\end{align*}

Now construct a number $d = 0.d_1d_2d_3 \ldots d_i \ldots$ as follows

\[d_i = \begin{cases}
1 & \text{if } a_{i,i} \neq 1 \\
2 & \text{if } a_{i,i} = 1
\end{cases} \]
Since $d \in (0, 1)$ and f is onto, there exists an $x \in \mathbb{N}$ such that $f(x) = d$. Moreover,

$$f(x) = 0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,x}\ldots$$

so

$$d = 0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,x}\ldots$$

by substitution. In other words, $d_i = a_{x,i}$, and specifically $d_x = a_{x,x}$. However, by the way that we have defined d, we know that $d_x \neq a_{x,x}$, a contradiction. Therefore $(0, 1)$ is not countable. □