Chapter 7 outline:

- Introduction, function equality, and anonymous functions (last week Friday)
- Image and inverse images (Monday)
- Function properties, composition, and applications to programming (Today)
- Cardinality (Friday)
- Countability (next week Monday)
- Review (Monday after Thanksgiving, Nov 27)
- Test 3, on Ch 6 & 7 (Wednesday after Thanksgiving, Nov 29)

Today:

- Programming: map and filter ✓ — did it last time
- Definition of one-to-one and onto, plus proofs
- Inverse functions
- Definition of function composition, plus proofs
Not a function.
(There’s a domain element that is related to two things.)

Not a function.
(There’s a domain element that is not related to anything.)
Onto (Surjection)

Everything in the codomain is hit.

\[f : X \rightarrow Y \] is onto if \(\forall y \in Y, \exists x \in X \mid f(x) = y. \]

Analytic use:
\(f \) is onto.
\(y \in Y. \)
Hence \(\exists x \in X \) such that \(f(x) = y. \)

Synthetic use:
Suppose \(y \in Y. \)
\(\therefore (Somehow find x such that f(x) = y.) \)
Therefore \(f \) is onto.
One-to-one (Injection)

Domain elements don't share.

\[f \text{ is one-to-one if } \forall x_1, x_2 \in X, \]
\[\text{if } f(x_1) = f(x_2) \text{ then } x_1 = x_2. \]

Analytic use:
\[f \text{ is one-to-one.} \]
\[f(x_1) = f(x_2). \]
Hence \(x_1 = x_2. \)

Synthetic use:
Suppose \(x_1, x_2 \in X \) and \(f(x_1) = f(x_2). \)
\[\therefore \]
\[(Somehow \ show \ x_1 = x_2.) \]
Therefore \(f \) is one-to-one.
Onto (not one-to-one)
$|X| \geq |Y|$

One-to-one (not onto)
$|X| \leq |Y|$

Both onto and one-to-one
$|X| = |Y|$
Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{x}{2}$. Is f one-to-one? Is it onto?

Proof. Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$. Then, by how f is defined, $x_1^2 = x_2^2$ which implies $x_1 = x_2$. Therefore, f is one-to-one by definition. □

Proof. Suppose $y \in \mathbb{R}$. [Want x such that $f(x) = y$.] Let $x = 2y$. Then $f(x) = 2y^2 = y$. Therefore, f is onto by definition. □
Let \(f : \mathbb{R} \to \mathbb{R} \) such that \(f(x) = \frac{x}{2} \). Is \(f \) one-to-one? Is it onto?

\(f \) is one-to-one.

Proof. Suppose \(x_1, x_2 \in \mathbb{R} \) such that \(f(x_1) = f(x_2) \). [Want \(x_1 = x_2 \)] Then, by how \(f \) is defined,
Let \(f : \mathbb{R} \to \mathbb{R} \) such that \(f(x) = \frac{x}{2} \). Is \(f \) one-to-one? Is it onto?

\(f \) is one-to-one.

Proof. Suppose \(x_1, x_2 \in \mathbb{R} \) such that \(f(x_1) = f(x_2) \). \([\text{Want } x_1 = x_2]\) Then, by how \(f \) is defined,

\[
\frac{x_1}{2} = \frac{x_2}{2} \\
\therefore x_1 = x_2
\]
Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{x}{2}$. Is f one-to-one? Is it onto?

f is one-to-one.

Proof. Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$. [Want $x_1 = x_2$] Then, by how f is defined,

\[
\frac{x_1}{2} = \frac{x_2}{2} \\
x_1 = x_2
\]

Therefore f is one-to-one by definition. □

f is onto.
Let \(f : \mathbb{R} \to \mathbb{R} \) such that \(f(x) = \frac{x}{2} \). Is \(f \) one-to-one? Is it onto?

\(f \) is one-to-one.

Proof. Suppose \(x_1, x_2 \in \mathbb{R} \) such that \(f(x_1) = f(x_2) \). [Want \(x_1 = x_2 \)] Then, by how \(f \) is defined,

\[
\begin{align*}
\frac{x_1}{2} &= \frac{x_2}{2} \\
x_1 &= x_2
\end{align*}
\]

Therefore \(f \) is one-to-one by definition. \(\square \)

\(f \) is onto.

Proof. Suppose \(y \in \mathbb{R} \). [Want \(x \) such that \(f(x) = y \)].
Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{x}{2}$. Is f one-to-one? Is it onto?

f is one-to-one.

Proof. Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$. [Want $x_1 = x_2$] Then, by how f is defined,

\[
\frac{x_1}{2} = \frac{x_2}{2} \\
x_1 = x_2
\]

Therefore f is one-to-one by definition. □

f is onto.

Proof. Suppose $y \in \mathbb{R}$. [Want x such that $f(x) = y$.]

Let $x = 2y$. Then

\[
f(x) = \frac{2y}{2} = y
\]

Therefore f is onto by definition □
Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. Is f one-to-one? Is it onto?

f is not one-to-one. $f(2) = 2^2 = 4$ and $f(-2) = (-2)^2 = 4$. Therefore, there exists more than one element in the domain that maps to the same element in the codomain.

f is not onto. Let $y = -1$. There does not exist an $x \in \mathbb{R}$ such that $f(x) = -1$. The range of f is $[0, \infty)$.
Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. Is f one-to-one? Is it onto?

f is not one-to-one.
$f(2) = 2^2 = 4$
$f(-2) = (-2)^2 = 4$

f is no onto.
Let $y = -1$.
$\forall x \in \mathbb{R}$ such that $f(x) = -1$.
Ex 7.6.4. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.

(Ex 7.4.9 was, Prove $A \subseteq F^{-1}(F(A))$, and Ex 7.4.10 was, Find a counterexample for $A = F^{-1}(F(A))$.)
Ex 7.6.4. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.

(Ex 7.4.9 was, Prove $A \subseteq F^{-1}(F(A))$, and Ex 7.4.10 was, Find a counterexample for $A = F^{-1}(F(A))$.)
Ex 7.6.5. If $A \subseteq Y$ and f is onto, then $A \subseteq F(F^{-1}(A))$.
Inverse relation: \(R^{-1} = \{(y, x) \in Y \times X \mid (x, y) \in R\} \)

Since a function is a relation, a function has an inverse, but we don’t know that the inverse of a function is a function.

If \(f : X \to Y \) is a one-to-one correspondence, then

\[
f^{-1} : Y \to X = \{(y, x) \in Y \times X \mid f(x) = y\}
\]

is the inverse function of \(f \).

Theorem 7.8 If \(f : X \to Y \) is a one-to-one correspondence, then \(f^{-1} : Y \to X \) is well defined.

Proof. Suppose \(y \in Y \). Since \(f \) is onto, there exists \(x \in X \) such that \(f(x) = y \). Hence \((y, x) \in f^{-1} \) or \(f^{-1}(y) = x \).

Further suppose \((y, x_1), (y, x_2) \in f^{-1} \) (That is, suppose that both \(f^{-1}(y) = x_1 \) and \(f^{-1}(y) = x_2 \).) Then \(f(x_1) = y \) and \(f(x_2) = y \). Since \(f \) is one-to-one, \(x_1 = x_2 \).

Therefore, by definition of function, \(f^{-1} \) is well defined. \(\square \)
Relation composition: If R is a relation from X to Y and S is a relation from Y to Z, then $S \circ R$ is the relation from X to Z defined as

$$S \circ R = \{(x, z) \in X \times Z \mid \exists y \in Y \text{ such that } (x, y) \in R \text{ and } (y, z) \in S\}$$

Function composition: If $f : X \to Y$ and $g : Y \to Z$, then $g \circ f : X \to Z$ is defined as

$$g \circ f = \{(x, z) \in X \times Z \mid z = g(f(x))\}$$

Theorem 7.9 If $f : X \to Y$ and $g : Y \to Z$ are functions, then $g \circ f : X \to Z$ is well defined.

Proof. Suppose $x \in X$. Since f is a function, there exists a $y \in Y$ such that $f(x) = y$. Since g is a function, there exists a $z \in Z$ such that $g(y) = z$. By definition of composition, $(x, z) \in g \circ f$, or $g \circ f(x) = z$.

Next suppose $(x, z_1), (x, z_2) \in g \circ f$, or $g \circ f(x) = z_1$ and $g \circ f(x) = z_2$. By definition of composition, there exist y_1, y_2 such that $f(x) = y_1$, $f(x) = y_2$, $g(y_1) = z_1$, and $g(y_2) = z_2$. Since f is a function, $y_1 = y_2$. Since g is a function, $z_1 = z_2$.

Therefore, by definition of function, $g \circ f$ is well defined. □
Function composition: If $f : X \to Y$ and $g : Y \to Z$, then $g \circ f : X \to Z$ is defined as

$$g \circ f = \{(x, z) \in X \times Z \mid x = g(f(x))\}$$

Let $f(x) = 3x$
Let $g(x) = x + 7$

Then

$$g \circ f(x) = f(x) + 7 = 3x + 7$$
Ex 7.8.4. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are both onto, then $g \circ f$ is onto.

Proof. Suppose $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are both onto.
Ex 7.8.4. If \(f : X \to Y \) and \(g : Y \to Z \) are both onto, then \(g \circ f \) is onto.

Proof. Suppose \(f : X \to Y \) and \(g : Y \to Z \) are both onto.

Now, we want to prove “ontoness.” Of which function?
Ex 7.8.4. If \(f : X \to Y \) and \(g : Y \to Z \) are both onto, then \(g \circ f \) is onto.

Proof. Suppose \(f : X \to Y \) and \(g : Y \to Z \) are both onto.

[Now, we want to prove “ontoness.” Of which function? \(g \circ f \). How do we prove ontoness?]
Ex 7.8.4. If $f : X \to Y$ and $g : Y \to Z$ are both onto, then $g \circ f$ is onto.

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove “ontoness.” Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we’re proving to be onto and show that it is hit. What is the codomain of $g \circ f$?]

\[\begin{tikzpicture}
\path [draw] (0,0) circle [radius=2cm] (3,0) circle [radius=2cm] (-3,0) circle [radius=2cm];
\draw[->,thick] (-3,0) to node [above] {X} (0,0);
\draw[->,thick] (0,0) to node [above] {Y} (3,0);
\draw[->,thick] (3,0) to node [above] {Z} (-3,0);
\end{tikzpicture}\]
Ex 7.8.4. If $f : X \to Y$ and $g : Y \to Z$ are both onto, then $g \circ f$ is onto.

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove “ontoness.” Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we’re proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.]

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
& \xrightarrow{g} & Z \\
\end{array}
\]
Ex 7.8.4. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are both onto, then $g \circ f$ is onto.

Proof. Suppose $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are both onto.

[Now, we want to prove “ontoness.” Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we’re proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.]

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

By definition of onto, there exists $y \in Y$ such that $g(y) = z$. Similarly there exists $x \in X$ such that $f(x) = y$. Now,

$$g \circ f(x) = g(f(x)) \quad \text{by definition of function composition}$$

$$= g(y) \quad \text{by substitution}$$

$$= z \quad \text{by substitution}$$

Therefore $g \circ f$ is onto by definition. \square
Ex 7.8.5. If $f : X \rightarrow Y$, $g : X \rightarrow Y$ and $h : Y \rightarrow Z$, h is one-to-one, and $h \circ f = h \circ g$, then $f = g$.
For next time:

Pg 346: 7.6.(2, 3, 6)
Ex “7.5.(a-c)” on Schoology
Pg 351: 7.8.(1, 5, 6)

Skim 7.9
Take last quiz