Chapter 1 & 2 outline:
▶ Introduction, sets and elements (last week Monday)
▶ Set operations; visual verification of set propositions (last week Wednesday)
▶ Introduction to SML; cardinality and Cartesian products (last week Friday)
▶ Making types and functions in SML (this past Wednesday)
▶ More about functions in SML; introduction to lists [Chapter 2] (today)
▶ Functions on lists; powersets (next week Monday)
▶ Application: A language processor (next week Wednesday)

Today:
▶ Unfinished business from last time
▶ Recursive functions
▶ Lists: Definition, operations, types
▶ (Time permitting) Functions on lists
1. Lists must have at least one item.

2. All elements in a list must have the same type.

3. Lists can have tuples in them.

4. Tuples can have lists in them.

5. This is a good way to think of lists:

6. This is a good way to think of lists:
[t1([5, 12, 6])@[8, 9]]
hd([12, 5, 6])::[2, 7]
\[\text{[(2.3, 5), (8.1, 6)]}, \text{[]}\]
([1, 12, 81], ["a", "bc"])

For next time:
Pg 48: 1.11.(4, 8, 10)
Pg 50-51: 1.12.(3, 5, 8)
Pg 70: 2.1.(2-4, 9, 10)

See assignment notes on Schoology Starting with this assignment, HW problems that ask you to write an ML function should be submitted using the “Programming assignment turn-in page.” You do not need to include your ML code with your on-paper problems that you turn in.

Reread 2.2 (as necessary)
Skim 2.3
Read 2.4