So far, we have seen

- Defining types and sets recursively.
- Proving propositions quantified over recursively defined sets using structural induction.
- Proving propositions quantified over \(\mathbb{W} \) or \(\mathbb{N} \) using mathematical induction. Specifically, to prove \(\forall n \in \mathbb{W}, I(n) \),
 - Prove \(I(0) \)
 - Prove \(\forall n \in \mathbb{W}, I(n) \rightarrow I(n + 1) \)

Today and Wednesday are about

- Proving the correctness of algorithms using mathematical induction
For next time:

Take quiz (on loop invariants)

For Friday, Nov 11:

Pg 306: 6.10.(2-5)

Read 7 intro and 7.1 carefully
Read 7.2
Skim 7.3
Take quiz (on function introduction)
\begin{equation*}
\begin{array}{ll}
n! = \begin{cases}
1 & \text{if } n = 0 \\
n \cdot (n-1)! & \text{otherwise}
\end{cases}
\end{array}
\end{equation*}

\textbf{Theorem 6.6.} For all } n \in \mathbb{W}, \text{ factorial}(n) = n!

\textbf{Proof.} By induction on } n.

\textbf{Base case.} Suppose } n = 0. \text{ By definition of factorial, } \text{factorial}(0) = 1 = 0!, \text{ by definition of } !. \text{ Hence there exists an } N \geq 0 \text{ such that } \text{factorial}(N) = N!.

\textbf{Inductive case.} Suppose } N \geq 0 \text{ such that } \text{factorial}(N) = N!, \text{ and suppose } n = N + 1. \text{ Then }

\begin{align*}
\text{factorial}(n) & = n \cdot \text{factorial}(n-1) \quad \text{by definition of factorial} \\
& = n \cdot \text{factorial}(N) \quad \text{by algebra and substitution} \\
& = n \cdot N! \quad \text{by the inductive hypothesis} \\
& = n! \quad \text{by definition of } !
\end{align*}

Therefore, by math induction, \text{factorial} is correct for all } n \in \mathbb{W}. \square
What does *correctness* mean for an algorithm?

The outcome/result must always match the specification. For `arithSum`, the specification is

\[
\text{arithSum}(N) = \sum_{k=1}^{N} k
\]

To prove this, we need to reason about the *change of state* of the computation.

The *state* of the computation is represented by the values of the variables.
We can reason about a single line of code in terms of *preconditions* and *postconditions*. Suppose the preconditions include \(x = 5 \).

\[
y := x + 1
\]

Then the postconditions include

- \(y = 6 \)
- \(x = 5 \)
- \(x = y - 1 \)
- \(G = 6.674 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2} \)
fun remainder(a, b) =
 let
 val q = a div b;
 Suppose $a, b \in \mathbb{Z}$
 $q = a \div b$ by assignment. By the QRT (Thm 4.21) and the definition of division, $a = b \cdot q + R$ for some R, $0 \leq R < b$. Then by algebra, $q = \frac{a - R}{b}$.
 val p = q * b;
 $p = q \cdot b$ by assignment, and $p = a - R$ by substitution and algebra.
 val r = a - p;
 By assignment, $r = a - p$. By substitution and algebra, $r = a - (a - R) = R$.
 in
 r
 end;
Since r is the value returned and is equal to the specified result R, this program returns the correct result. □
For arithSum, N is the limit on the summation. Let n be the number of iterations so far. Our claim is

$$s = \sum_{k=1}^{n} k$$

Notice

- After 0 iterations, $s = 0$ and $\sum_{k=1}^{0} k = 0$. Our claim is true before we start.
- Each iteration changes the state, but maintains the fact above (or, so we claim).
- When we’re done, that’s N iterations, so $\sum_{k=1}^{n} k = \sum_{k=1}^{N} k$ (or, so we claim).

Refining the claim:

$$\forall n \in \mathbb{W}, \text{ after } n \text{ iterations } s = \sum_{k=1}^{n} k \text{ and } i = n + 1$$
Theorem. \(\text{arithSum}(N) \) returns \(\sum_{k=1}^{N} k \).

Lemma. \(\forall \ n \in \mathbb{W}, \) after \(n \) iterations, \(s = \sum_{k=1}^{n} k \) and \(i = n + 1 \).

Proof (of lemma). By induction on the number of iterations, \(n \).

Initialization. After 0 iterations, \(s = 0 = \sum_{k=1}^{0} k \) by assignment, arithmetic, and definition of summation. \(i = 1 = 0 + 1 \), by assignment and arithmetic.

Maintenance. Suppose after \(n \geq 0 \) iterations, \(s = \sum_{k=1}^{n} k \) and \(i = n + 1 \). Let \(s_{\text{old}} \) be \(s \) after \(n \) iterations and \(s_{\text{new}} \) be \(s \) after \(n + 1 \) iterations. Similarly define \(i_{\text{old}} \) and \(i_{\text{new}} \). Then

\[
\begin{align*}
 s_{\text{new}} &= s_{\text{old}} + i_{\text{old}} & \text{by assignment} \\
 &= (\sum_{k=1}^{n} k) + n + 1 & \text{by the inductive hypothesis} \\
 &= \sum_{k=1}^{n+1} k & \text{by the definition of summation} \\
 i_{\text{new}} &= i_{\text{old}} + 1 & \text{by assignment} \\
 &= n + 1 + 1 & \text{by the inductive hypothesis} \\
 &= (n + 1) + 1 & \text{by associativity}
\end{align*}
\]

Therefore the invariant holds. \(\square \)
Theorem. \(\text{arithSum}(N) \) returns \(\sum_{k=1}^{N} k \).

Lemma. \(\forall n \in \mathbb{W}, \) after \(n \) iterations, \(s = \sum_{k=1}^{n} k \) and \(i = n + 1 \).

Proof (of theorem). Suppose \(N \in \mathbb{W} \) is the input to \text{arithSum}.

Termination. The lemma tells us that after \(N \) iterations, \(i = N + 1 \not\leq N \), so the guard fails and the loop terminates.

At loop exit, \(s = \sum_{k=1}^{N} k \), which is return.

Therefore the program \text{arithSum} is correct. \(\square \)
Principles of using loop invariants to prove correctness

- A loop invariant is a proposition that is true before and after each iteration of a loop, including before the entire loop starts and after it terminates. A useful loop invariant captures an aspect of the progress of the loop’s work.

- The steps in a loop invariant proof, to prove and apply something in the form, “∀n ∈ \mathbb{W}, after n iterations,”
 - Initialization. Prove that the property is true before the loop starts, that is, after 0 iterations. This is the base case in the inductive proof.
 - Maintenance. Prove that if the property is true before an iteration, then it is true after that iteration. This is the inductive case of the inductive proof.
 - Termination. Prove that the loop will terminate, and then apply the loop invariant to deduce a postcondition for the entire loop.
fun aaa(m) =
 let
 val x = ref 0;
 val i = ref 0;
 in
 (while !i < m do
 (x := !x + 2 * !i;
 i := !i + 1);
 !x)
 end;

After \(n \) iterations, \(x \) is even.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, \(x = 0 \) by assignment. Moreover, \(x = 2 \cdot 0 \), so \(x \) is even by definition.

Maintenance. Suppose that after \(n \) iterations \(x \) is even, for some \(n \geq 0 \). Let \(x_{old} \) and \(x_{new} \) be \(x \) after \(n \) and \(n+1 \) iterations, respectively.

\[x_{old} = 2j \] for some \(j \in \mathbb{Z} \) by the inductive hypothesis and definition of even. Then

\[
x_{new} = x_{old} + 2i \quad \text{by assignment}
\]
\[
= 2j + 2i \quad \text{by substitution}
\]
\[
= 2(j + i) \quad \text{by algebra}
\]

Hence \(x_{new} \) is even by definition.

Therefore, by the principle of mathematical induction, that \(x \) is even is a loop invariant. \(\Box \)
fun pow(x, y) = let
 val a = ref 1;
 val i = ref y;
 in
 (while !i > 0 do
 (i := !i - 1;
 a := !a * x);
 !a)
end;

After n iterations, $a = x^n$ and $i = y - n$.

Proof. By induction on the number of iterations.

Initialization. Suppose $n = 0$, that is, the conditions before the loop starts. Then $a = 1$ by assignment, and hence $a = x^0 = x^n$ by algebra. Similarly, $i = y$ by assignment, and hence $i = y - 0 = y - n$ by algebra.

Maintenance. Suppose that $a = x^n$ and $i = y - n$ after n iterations for some $n \geq 0$. Let $a_{\text{old}}, a_{\text{new}}, i_{\text{old}},$ and i_{new} be defined in the usual way. Then

\[
\begin{align*}
 i_{\text{new}} &= i_{\text{old}} - 1 & \text{by assignment} \\
 &= y - n - 1 & \text{by the inductive hypothesis} \\
 &= y - (n + 1) & \text{by algebra} \\
\end{align*}
\]
\[
\begin{align*}
 a_{\text{new}} &= a_{\text{old}} \cdot x & \text{by assignment} \\
 &= x^n \cdot x & \text{by the inductive hypothesis} \\
 &= x^{n+1} & \text{by algebra}
\end{align*}
\]

Therefore, by the principle of mathematical induction, $a = x^n$ and $i = y - n$, where n is the number of iterations completed, is a loop invariant. \square
After n iterations, $x + y = m$.

fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.
After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then
After n iterations, $x + y = m$.

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, $x = m$ and $y = 0$ by assignment. Hence $x + y = m$ by algebra.

Maintenance Suppose $x + y = m$ after n iterations for some $n \geq 0$. Let x_{old}, x_{new}, y_{old}, and y_{new} be defined in the usual way. Then

$$
\begin{align*}
 x_{\text{new}} &= x_{\text{old}} - i & \text{by assignment} \\
 y_{\text{new}} &= y_{\text{old}} + i & \text{by assignment} \\
 x_{\text{new}} + y_{\text{new}} &= x_{\text{old}} - i + y_{\text{old}} + i & \text{by substitution} \\
 &= x_{\text{old}} + y_{\text{old}} & \text{by algebra} \\
 &= m & \text{by the inductive hypothesis}
\end{align*}
$$

\[\]
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 x_{\text{new}} &= x_{\text{old}} - i & \text{by assignment} \\
 y_{\text{new}} &= y_{\text{old}} + i & \text{by assignment} \\
 x_{\text{new}} + y_{\text{new}} &= x_{\text{old}} - i + y_{\text{old}} + i & \text{by substitution} \\
 &= x_{\text{old}} + y_{\text{old}} & \text{by algebra} \\
 &= m & \text{by the inductive hypothesis}
\end{align*}
\]

Therefore, by the principle of mathematical induction, \(x + y = m \) is a loop invariant. \(\Box\)
Reminder: Ex 6.10.(2-5) for next time.
Also (very important):
- Read 7 intro and 7.1 *carefully*
- Read 7.2
- Skim 7.3
- Take quiz