Chapter 6 roadmap:

- Recursive definitions and types (last week Monday)
- Structural induction (last week Wednesday)
- Mathematical induction (last week Friday)
- Loop invariant proofs (**Monday and Wednesday**)
- (Begin Chapter 7 (Functions) on Friday)

Project prototype due Wed, Nov 8

So far, we have seen

- Defining types and sets recursively.
- Proving propositions quantified over recursively defined sets using structural induction.
- Proving propositions quantified over \(\mathbb{W} \) or \(\mathbb{N} \) using mathematical induction. Specifically, to prove \(\forall n \in \mathbb{W}, \, I(n) \),
 - Prove \(I(0) \)
 - Prove \(\forall n \in \mathbb{W}, \, I(n) \implies I(n+1) \)

Today and Wednesday are about

- Proving the correctness of algorithms using mathematical induction
For next time:

Take quiz (on loop invariants)

For Friday, Nov 10:

Pg 306: 6.10.(2-5)

Read 7 intro and 7.1 carefully
Read 7.2
Skim 7.3
Take quiz (on function introduction)
$$n! = \begin{cases}
1 & \text{if } n = 0 \\
n \cdot (n-1)! & \text{otherwise}
\end{cases}$$

```lisp
fun factorial(0) = 1
| factorial(n) = n * factorial(n-1);
```

Theorem 6.6. For all $n \in \mathbb{W}$, $\text{factorial}(n) = n!$

Proof. By induction on n.

Base case. Suppose $n = 0$. By definition of factorial, $\text{factorial}(0) = 1 = 0!$, by definition of $!$. Hence there exists an $N \geq 0$ such that $\text{factorial}(N) = N!$.

Inductive case. Suppose $N \geq 0$ such that $\text{factorial}(N) = N!$, and suppose $n = N + 1$. Then

$$\begin{align*}
\text{factorial}(n) &= n \cdot \text{factorial}(n-1) \quad \text{by definition of factorial} \\
&= n \cdot \text{factorial}(N) \quad \text{by algebra and substitution} \\
&= n \cdot N! \quad \text{by the inductive hypothesis} \\
&= n! \quad \text{by definition of $!$}
\end{align*}$$

Therefore, by math induction, factorial is correct for all $n \in \mathbb{W}$. □
What does *correctness* mean for an algorithm?

The outcome/result must always match the specification. For arithSum, the specification is

\[\text{arithSum}(N) = \sum_{k=1}^{N} k \]

To prove this, we need to reason about the *change of state* of the computation. The *state* of the computation is represented by the values of the variables.
We can reason about a single line of code in terms of *preconditions* and *postconditions*. Suppose the preconditions include $x = 5$.

\[
y := x + 1
\]

Then the postconditions include

- $y = 6$
- $x = 5$
- $x = y - 1$
- $G = 6.674 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$
fun remainder(a, b) =
 let
 val q = a div b;
 Suppose $a, b \in \mathbb{Z}$
 $q = a \div b$ by assignment. By the QRT (Thm 4.21)
 and the definition of division, $a = b \cdot q + R$ for some R,
 $0 \leq R < b$. Then by algebra, $q = \frac{a-R}{b}$.
 val p = q * b;
 $p = q \cdot b$ by assignment, and $p = a - R$ by substitution
 and algebra.
 val r = a - p;
 By assignment, $r = a - p$. By substitution and algebra,
 $r = a - (a - R) = R$.
 in
 r
 end;
Since r is the value returned and is equal to the specified result R, this program
returns the correct result. □
For arithSum, N is the limit on the summation. Let n be the number of iterations so far. Our claim is

$$s = \sum_{k=1}^{n} k$$

After n iterations, $s = \sum_{k=1}^{n} k$

Notice

- After 0 iterations, $s = 0$ and $\sum_{k=1}^{0} k = 0$. Our claim is true before we start.
- Each iteration changes the state, but maintains the fact above (or, so we claim).
- When we’re done, that’s N iterations, so $\sum_{k=1}^{n} k = \sum_{k=1}^{N} k$ (or, so we claim).

Refining the claim:

$$\forall n \in \mathbb{W}, \text{ after } n \text{ iterations } s = \sum_{k=1}^{n} k \text{ and } i = n + 1$$
Theorem. arithSum(N) returns $\sum_{k=1}^{N} k$.

Lemma. $\forall n \in \mathbb{W}$, after n iterations, $s = \sum_{k=1}^{n} k$ and $i = n + 1$.

Proof (of lemma). By induction on the number of iterations, n.

Initialization. After 0 iterations, $s = 0 = \sum_{k=1}^{0} k$ by assignment, arithmetic, and definition of summation. $i = 1 = 0 + 1$, by assignment and arithmetic.

Maintenance. Suppose after $n \geq 0$ iterations, $s = \sum_{k=1}^{n} k$ and $i = n + 1$. Let s_{old} be s after n iterations and s_{new} be s after $n + 1$ iterations. Similarly define i_{old} and i_{new}. Then

\[
\begin{align*}
 s_{\text{new}} &= s_{\text{old}} + i_{\text{old}} & \text{by assignment} \\
 &= (\sum_{k=1}^{n} k) + n + 1 & \text{by the inductive hypothesis} \\
 &= \sum_{k=1}^{n+1} k & \text{by the definition of summation} \\
 i_{\text{new}} &= i_{\text{old}} + 1 & \text{by assignment} \\
 &= n + 1 + 1 & \text{by the inductive hypothesis} \\
 &= (n + 1) + 1 & \text{by associativity}
\end{align*}
\]

Therefore the invariant holds. \square
Theorem. arithSum(N) returns $\sum_{k=1}^{N} k$.

Lemma. $\forall n \in \mathbb{W},$ after n iterations, $s = \sum_{k=1}^{n} k$ and $i = n + 1$.

Proof (of theorem). Suppose $N \in \mathbb{W}$ is the input to arithSum.

Termination. The lemma tells us that after N iterations, $i = N + 1 \nleq N$, so the guard fails and the loop terminates.

At loop exit, $s = \sum_{k=1}^{N} k$, which is return.

Therefore the program arithSum is correct. □
Principles of using loop invariants to prove correctness

- A loop invariant is a proposition that is true before and after each iteration of a loop, including before the entire loop starts and after it terminates. A useful loop invariant captures an aspect of the progress of the loop’s work.

- The steps in a loop invariant proof, to prove and apply something in the form, “∀n ∈ W, after n iterations,”
 - Initialization. Prove that the property is true before the loop starts, that is, after 0 iterations. This is the base case in the inductive proof.
 - Maintenance. Prove that if the property is true before an iteration, then it is true after that iteration. This is the inductive case of the inductive proof.
 - Termination. Prove that the loop will terminate, and then apply the loop invariant to deduce a postcondition for the entire loop.
fun aaa(m) =
 let
 val x = ref 0;
 val i = ref 0;
 in
 (while !i < m do
 (x := !x + 2 * !i;
 i := !i + 1);
 !x)
 end;

After n iterations, x is even.

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, $x = 0$ by assignment. Moreover, $x = 2 \cdot 0$, so x is even by definition.

Maintenance. Suppose that after n iterations x is even, for some $n \geq 0$. Let x_{old} and x_{new} be x after n and $n+1$ iterations, respectively.

$x_{old} = 2j$ for some $j \in \mathbb{Z}$ by the inductive hypothesis and definition of even. Then

$$x_{new} = x_{old} + 2i \quad \text{by assignment}$$
$$= 2j + 2i \quad \text{by substitution}$$
$$= 2(j + i) \quad \text{by algebra}$$

Hence x_{new} is even by definition. Therefore, by the principle of mathematical induction, that x is even is a loop invariant. □
fun pow(x, y) =
 let
 val a = ref 1;
 val i = ref y;
 in
 (while !i > 0 do
 (i := !i - 1;
 a := !a * x);
 !a)
 end;

After \(n \) iterations, \(a = x^n \) and \(i = y - n \).

Proof. By induction on the number of iterations.

Initialization. Suppose \(n = 0 \), that is, the conditions before the loop starts. Then \(a = 1 \) by assignment, and hence \(a = x^0 = x^n \) by algebra. Similarly, \(i = y \) by assignment, and hence \(i = y - 0 = y - n \) by algebra.

Maintenance. Suppose that \(a = x^n \) and \(i = y - n \) after \(n \) iterations for some \(n \geq 0 \). Let \(a_{\text{old}}, a_{\text{new}}, i_{\text{old}}, \) and \(i_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 i_{\text{new}} &= i_{\text{old}} - 1 \quad \text{by assignment} \\
 &= y - n - 1 \quad \text{by the inductive hypothesis} \\
 &= y - (n + 1) \quad \text{by algebra} \\
 a_{\text{new}} &= a_{\text{old}} \cdot x \quad \text{by assignment} \\
 &= x^n \cdot x \quad \text{by the inductive hypothesis} \\
 &= x^{n+1} \quad \text{by algebra}
\end{align*}
\]

Therefore, by the principle of mathematical induction, \(a = x^n \) and \(i = y - n \), where \(n \) is the number of iterations completed, is a loop invariant. \(\square \)
After n iterations, $x + y = m$.

fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;
After n iterations, $x + y = m$.

Proof. By induction on the number of iterations.

```plaintext
fun xxx(m) = 
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1;
  in
    (while !i < m div 2 do
      (x := !x - i;
       y := !y + i;
       i := !i * 2);
    !x - !y)
  end;
```
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After n iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then
After n iterations, $x + y = m$.

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, $x = m$ and $y = 0$ by assignment. Hence $x + y = m$ by algebra.

Maintenance Suppose $x + y = m$ after n iterations for some $n \geq 0$. Let $x_{\text{old}}, x_{\text{new}}, y_{\text{old}},$ and y_{new} be defined in the usual way. Then

\[
\begin{align*}
x_{\text{new}} &= x_{\text{old}} - i & \text{by assignment} \\
y_{\text{new}} &= y_{\text{old}} + i & \text{by assignment} \\
x_{\text{new}} + y_{\text{new}} &= x_{\text{old}} - i + y_{\text{old}} + i & \text{by substitution} \\
&= x_{\text{old}} + y_{\text{old}} & \text{by algebra} \\
&= m & \text{by the inductive hypothesis}
\end{align*}
\]
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After *n* iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 x_{\text{new}} & = x_{\text{old}} - i \quad \text{by assignment} \\
 y_{\text{new}} & = y_{\text{old}} + i \quad \text{by assignment} \\
 x_{\text{new}} + y_{\text{new}} & = x_{\text{old}} - i + y_{\text{old}} + i \quad \text{by substitution} \\
 & = x_{\text{old}} + y_{\text{old}} \quad \text{by algebra} \\
 & = m \quad \text{by the inductive hypothesis}
\end{align*}
\]

Therefore, by the principle of mathematical induction, \(x + y = m \) is a loop invariant. \(\square \)
Reminder: Ex 6.10.(2-5) for next time.
Also (very important):

- Read 7 intro and 7.1 *carefully*
- Read 7.2
- Skim 7.3
- Take quiz