So far, we have seen

- Defining types and sets recursively.
- Proving propositions quantified over recursively defined sets using structural induction.
- Proving propositions quantified over \(\mathbb{W} \) or \(\mathbb{N} \) using mathematical induction. Specifically, to prove \(\forall n \in \mathbb{W}, \; I(n) \),
 - Prove \(I(0) \)
 - Prove \(\forall n \in \mathbb{W}, \; I(n) \implies I(n + 1) \)

Today and Wednesday are about

- Proving the correctness of algorithms using mathematical induction
For Friday, Nov 12:

Pg 306: 6.10.(2-5)

Read 7 intro and 7.1 carefully
Read 7.2
Skim 7.3
\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n-1)! & \text{otherwise}
\end{cases} \]

\begin{verbatim}
fun factorial(0) = 1
| factorial(n) = n * factorial(n-1);
\end{verbatim}

Theorem 6.6. For all \(n \in \mathbb{W} \), \(\text{factorial}(n) = n! \)

Proof. By induction on \(n \).

Base case. Suppose \(n = 0 \). By definition of \(\text{factorial} \), \(\text{factorial}(0) = 1 = 0! \), by definition of \(!\). Hence there exists an \(N \geq 0 \) such that \(\text{factorial}(N) = N! \).

Inductive case. Suppose \(N \geq 0 \) such that \(\text{factorial}(N) = N! \), and suppose \(n = N + 1 \). Then

\[
\text{factorial}(n) = n \cdot \text{factorial}(n-1) \quad \text{by definition of \(\text{factorial} \)}
\]
\[
= n \cdot \text{factorial}(N) \quad \text{by algebra and substitution}
\]
\[
= n \cdot N! \quad \text{by the inductive hypothesis}
\]
\[
= n! \quad \text{by definition of \(!\)}
\]

Therefore, by math induction, \(\text{factorial} \) is correct for all \(n \in \mathbb{W} \). \(\square \)
What does *correctness* mean for an algorithm?

The outcome/result must always match the specification. For arithSum, the specification is

\[
arithSum(N) = \sum_{k=1}^{N} k
\]

To prove this, we need to reason about the *change of state* of the computation. The *state* of the computation is represented by the values of the variables.
We can reason about a single line of code in terms of *preconditions* and *postconditions*. Suppose the preconditions include $x = 5$.

\[
y := x + 1
\]

Then the postconditions include
\begin{itemize}
 \item $y = 6$
 \item $x = 5$
 \item $y = x - 1$
 \item $G = 6.674 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$
\end{itemize}
fun remainder(a, b) =
 let
 val q = a div b;
 Suppose \(a, b \in \mathbb{Z} \)
 \(q = a \div b \) by assignment. By the QRT (Thm 4.21)
 and the definition of division, \(a = b \cdot q + R \) for some \(R \),
 \(0 \leq R < b \). Then by algebra, \(q = \frac{a-R}{b} \).
 val p = q * b;
 \(p = q \cdot b \) by assignment, and \(p = a - R \) by substitution
 and algebra.
 val r = a - p;
 By assignment, \(r = a - p \). By substitution and algebra,
 \(r = a - (a - R) = R \).
 in
 r
 end;
Since \(r \) is the value returned and is equal to the specified result \(R \),
this program returns the correct result. \(\square \)
For arithSum, \(N \) is the limit on the summation. Let \(n \) be the number of iterations so far. Our claim is

\[
\text{After } n \text{ iterations, } \ s = \sum_{k=1}^{n} k
\]

Notice

- After 0 iterations, \(s = 0 \) and \(\sum_{k=1}^{0} k = 0 \). Our claim is true before we start.
- Each iteration changes the state, but maintains the fact above (or, so we claim).
- When we’re done, that’s \(N \) iterations, so \(\sum_{k=1}^{n} k = \sum_{k=1}^{N} k \) (or, so we claim).

Refining the claim:

\[
\forall \ n \in \mathbb{W}, \ \text{after } n \text{ iterations } s = \sum_{k=1}^{n} k \text{ and } i = n + 1
\]
Theorem. \(\text{arithSum}(N) \) returns \(\sum_{k=1}^{N} k \).

Lemma. \(\forall \ n \in \mathbb{N}, \) after \(n \) iterations, \(s = \sum_{k=1}^{n} k \) and \(i = n + 1 \).

Proof (of lemma). By induction on the number of iterations, \(n \).

Initialization. After 0 iterations, \(s = 0 = \sum_{k=1}^{0} k \) by assignment, arithmetic, and definition of summation. \(i = 1 = 0 + 1 \), by assignment and arithmetic.

Maintenance. Suppose after \(n \geq 0 \) iterations, \(s = \sum_{k=1}^{n} k \) and \(i = n + 1 \).

Let \(s_{\text{old}} \) be \(s \) after \(n \) iterations and \(s_{\text{new}} \) be \(s \) after \(n + 1 \) iterations. Similarly define \(i_{\text{old}} \) and \(i_{\text{new}} \). Then

\[
\begin{align*}
 s_{\text{new}} &= s_{\text{old}} + i_{\text{old}} & \text{by assignment} \\
 &= (\sum_{k=1}^{n} k) + n + 1 & \text{by the inductive hypothesis} \\
 &= \sum_{k=1}^{n+1} k & \text{by the definition of summation} \\
 i_{\text{new}} &= i_{\text{old}} + 1 & \text{by assignment} \\
 &= n + 1 + 1 & \text{by the inductive hypothesis} \\
 &= (n + 1) + 1 & \text{by associativity}
\end{align*}
\]

Therefore the invariant holds. \(\square \)
Theorem. \(\text{arithSum}(N) \) returns \(\sum_{k=1}^{N} k \).

Lemma. \(\forall n \in \mathbb{W}, \text{after } n \text{ iterations, } s = \sum_{k=1}^{n} k \text{ and } i = n + 1. \)

Proof (of theorem). Suppose \(N \in \mathbb{W} \) is the input to \(\text{arithSum} \).

Termination. The lemma tells us that after \(N \) iterations, \(i = N + 1 \not\leq N \), so the guard fails and the loop terminates.

At loop exit, \(s = \sum_{k=1}^{N} k \), which is return.

Therefore the program \(\text{arithSum} \) is correct. \(\square \)
Principles of using loop invariants to prove correctness

- A loop invariant is a proposition that is true before and after each iteration of a loop, including before the entire loop starts and after it terminates. A useful loop invariant captures an aspect of the progress of the loop’s work.

- The steps in a loop invariant proof, to prove and apply something in the form, “∀ \(n \in \mathbb{W} \), after \(n \) iterations,”
 - **Initialization.** Prove that the property is true before the loop starts, that is, after 0 iterations. This is the base case in the inductive proof.
 - **Maintenance.** Prove that if the property is true before an iteration, then it is true after that iteration. This is the inductive case of the inductive proof.
 - **Termination.** Prove that the loop will terminate, and then apply the loop invariant to deduce a postcondition for the entire loop.
fun aaa(m) =
 let
 val x = ref 0;
 val i = ref 0;
 in
 (while !i < m do
 (x := !x + 2 * !i;
 i := !i + 1);
 !x)
 end;

After \(n \) iterations, \(x \) is even.

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = 0 \) by assignment. Moreover, \(x = 2 \cdot 0 \), so \(x \) is even by definition.

Maintenance. Suppose that after \(n \) iterations \(x \) is even, for some \(n \geq 0 \). Let \(x_{\text{old}} \) and \(x_{\text{new}} \) be \(x \) after \(n \) and \(n+1 \) iterations, respectively.

\(x_{\text{old}} = 2j \) for some \(j \in \mathbb{Z} \) by the inductive hypothesis and definition of even. Then

\[
 x_{\text{new}} = x_{\text{old}} + 2i \quad \text{by assignment}
\]

\[
 = 2j + 2i \quad \text{by substitution}
\]

\[
 = 2(j + i) \quad \text{by algebra}
\]

Hence \(x_{\text{new}} \) is even by definition.

Therefore, by the principle of mathematical induction, that \(x \) is even is a loop invariant. \(\square \)
fun pow(x, y) =
 let
 val a = ref 1;
 val i = ref y;
 in
 (while !i > 0 do
 (i := !i - 1;
 a := !a * x);
 !a)
 end;

After \(n \) iterations, \(a = x^n \) and \(i = y - n \).

Proof. By induction on the number of iterations.

Initialization. Suppose \(n = 0 \), that is, the conditions before the loop starts. Then \(a = 1 \) by assignment, and hence \(a = x^0 = x^n \) by algebra. Similarly, \(i = y \) by assignment, and hence \(i = y - 0 = y - n \) by algebra.

Maintenance. Suppose that \(a = x^n \) and \(i = y - n \) after \(n \) iterations for some \(n \geq 0 \). Let \(a_{\text{old}}, a_{\text{new}}, i_{\text{old}}, \) and \(i_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 i_{\text{new}} &= i_{\text{old}} - 1 & \text{by assignment} \\
 &= y - n - 1 & \text{by the inductive hypothesis} \\
 &= y - (n + 1) & \text{by algebra} \\
 a_{\text{new}} &= a_{\text{old}} \cdot x & \text{by assignment} \\
 &= x^n \cdot x & \text{by the inductive hypothesis} \\
 &= x^{n+1} & \text{by algebra}
\end{align*}
\]

Therefore, by the principle of mathematical induction, \(a = x^n \) and \(i = y - n \), where \(n \) is the number of iterations completed, is a loop invariant. \(\Box \)
After \(n \) iterations, \(x + y = m \).

fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;
After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

```plaintext
fun xxx(m) =
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1;
  in
    (while !i < m div 2 do
      (x := !x - i;
       y := !y + i;
       i := !i * 2);
      !x - !y)
  end;
```
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 x := !x - i;
 y := !y + i;
 i := !i * 2;
 !x - !y)
 end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then

\[
x_{\text{new}} = x_{\text{old}} - i \quad \text{by assignment}
\]

\[
y_{\text{new}} = y_{\text{old}} + i \quad \text{by assignment}
\]

\[
x_{\text{new}} + y_{\text{new}} = x_{\text{old}} - i + y_{\text{old}} + i
\]

\[
= x_{\text{old}} + y_{\text{old}} \quad \text{by substitution}
\]

\[
= m \quad \text{by the inductive hypothesis}
\]

Therefore, by the principle of mathematical induction, \(x + y = m \) is a loop invariant. \(\square \)
fun xxx(m) =
let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
end;

After n iterations, \(x + y = m\).

\textbf{Proof.} By induction on the number of iterations.

\textbf{Initialization.} Before the loop starts, \(x = m\) and \(y = 0\) by assignment. Hence \(x + y = m\) by algebra.

\textbf{Maintenance} Suppose \(x + y = m\) after \(n\) iterations for some \(n \geq 0\). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}},\) and \(y_{\text{new}}\) be defined in the usual way. Then
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;

After n iterations, \(x + y = m \).

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \) and \(y_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 x_{\text{new}} &= x_{\text{old}} - i & \text{by assignment} \\
 y_{\text{new}} &= y_{\text{old}} + i & \text{by assignment} \\
 x_{\text{new}} + y_{\text{new}} &= x_{\text{old}} - i + y_{\text{old}} + i & \text{by substitution} \\
 &= x_{\text{old}} + y_{\text{old}} & \text{by algebra} \\
 &= m & \text{by the inductive hypothesis}
\end{align*}
\]
fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
end;

After \(n \) iterations, \(x + y = m \).

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, \(x = m \) and \(y = 0 \) by assignment. Hence \(x + y = m \) by algebra.

Maintenance Suppose \(x + y = m \) after \(n \) iterations for some \(n \geq 0 \). Let \(x_{\text{old}}, x_{\text{new}}, y_{\text{old}}, \text{ and } y_{\text{new}} \) be defined in the usual way. Then

\[
\begin{align*}
 x_{\text{new}} &= x_{\text{old}} - i & \text{by assignment} \\
 y_{\text{new}} &= y_{\text{old}} + i & \text{by assignment} \\
 x_{\text{new}} + y_{\text{new}} &= x_{\text{old}} - i + y_{\text{old}} + i & \text{by substitution} \\
 &= x_{\text{old}} + y_{\text{old}} & \text{by algebra} \\
 &= m & \text{by the inductive hypothesis}
\end{align*}
\]

Therefore, by the principle of mathematical induction, \(x + y = m \) is a loop invariant. \(\square \)
Reminder: Ex 6.10.(2-5) for next time.
Also (very important):
 ▶ Read 7 intro and 7.1 *carefully*
 ▶ Read 7.2
 ▶ Skim 7.3