Chapter 4 roadmap:

▶ Subset proofs (Today)
▶ Set equality and emptiness proofs (Friday)
▶ Conditional and biconditional proofs (next week Monday)
▶ Proofs about powersets (new week Wednesday)
▶ From theorems to algorithms (next week Friday)

Today:

▶ Transition point in course
▶ Game plan for Chapter 4
▶ Anatomy of a proof
▶ Proof examples

Project proposal due next week Monday, Oct 2.
\[\triangle A \cong \triangle B \]

\[\angle 1 + \angle 2 = 90^\circ \]
\[\angle 1 + \angle 2' = 90^\circ \]
\[\angle 3 = 90^\circ \]

\(T \) is a square

Area of \(T = c^2 \)

Area of \(S = (a + b)^2 \)

Area of each \(\triangle = \frac{ab}{2} \)

\[(a + b)^2 = c^2 + 4 \frac{ab}{2} \]

\[a^2 + 2ab + b^2 = c^2 + 2ab \]

\[\therefore c^2 = a^2 + b^2 \]

SSS

\(\triangle \) angles sum to \(180^\circ \)
\[\angle 2 \cong \angle 2' \]

Supplementary \(\angle \)s

Equal sides, \(90^\circ \) \(\angle \)s

Area of \(\square \)

Area of \(\square \)

Area of \(\triangle \)

Sum of areas

Algebra (FOIL, simplification)

Subtract \(2ab \) from both sides.
sentences

\{ non-propositions (questions, commands, nonsense, paradoxes) \}

propositions

\{ false propositions, true propositions \}

true propositions

\{ axioms, conjectures that happen to be true, theorems \}
General forms:

1. Facts \((p)\)
 Set forms
 1. Subset \(X \subseteq Y\)
 2. Set equality \(X = Y\)
 3. Set emptiness \(X = \emptyset\)

2. Conditionals \((p \rightarrow q)\)

3. Biconditionals \((p \leftrightarrow q)\)
\[X \cup Y = \{ z \mid z \in X \lor z \in Y \} \]

\[X - Y = \{ z \mid z \in X \land z \notin Y \} \]

\[X \cap Y = \{ z \mid z \in X \land z \in Y \} \]

\[X \times Y = \{ (x, y) \mid x \in X \land y \in Y \} \]

\[\overline{X} = \{ z \mid z \notin X \} \]
For next time:

Pg 158: 4.2.(2–7)

Review 4.(1 & 2)
Read 4.(3 & 4)

Take quiz